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User manual to the course

Question block

Discuss in class!

Important block

This is important!

Search block

Search and think outside the box (and the classroom)!

links to code in and , further reading
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Course web page

sites.google.com/aims.ac.rw/mamodafrica-trainingschool/week-3/modsimul
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Influenza outbreak in a boarding school: the data

date in bed convalescent total

1978-01-22 3 0 763
1978-01-23 8 0 763
1978-01-24 26 0 763
1978-01-25 76 0 763
1978-01-26 225 9 763
1978-01-27 298 17 763
1978-01-28 258 105 763
1978-01-29 233 162 763
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Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: model hypotheses

time series of symptomatic (i.e. infectious) cases

ordinary differential equations/ Markov process, what happens next depends only on now

homogeneous population

compartments for susceptible S , infectious I , recovered R individuals

closed population, no deaths

constant population size, no births nor migration

well-mixed population

mass action principle, force λ(I ) acting on mass S

denser population in dormitory ⇒ more infections

density-dependent (vs. frequency-dependent) force

full immunity upon recovery

recovered individuals cannot become susceptible again

Introduction 8 / 101



Influenza outbreak in a boarding school: bathtubs
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Influenza outbreak in a boarding school: compartments

rate = number of events happening within time step ∆

γ recovery rate from infection

λ ≡ λ(I ) force of infection rate
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Influenza outbreak in a boarding school: compartments

Recurrence equation with update linear in time increment ∆

S(t +∆) = S(t) + ∆ {−λ(I (t))S(t)}
I (t +∆) = I (t) + ∆ {λ(I (t))S(t)− γI}
R(t +∆) = R(t) + ∆ {γI (t)}

Initial condition

S(0) = S0 < N

I (0) = I0 > 0

R(0) = 0
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Influenza outbreak in a boarding school: force of infection

Force of infection

λ(I ) rate at which new infectious created from susceptible

Density-dependent transmission

Per capita contact rate between susceptible and infected depends on the population
density. Transmission rates increase with density.

Frequency-dependent transmission

Per capita contact rate between susceptible and infected does not depend on the
population density. Transmission rates do not change with density.
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Density- vs frequency-dependent transmission
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Density- vs frequency-dependent transmission

Density-dependent transmission
more individuals per area increases transmission

Frequency-dependent transmission
more individuals, no impact transmission
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Density- vs frequency-dependent transmission

Density-dependent transmission
more individuals per area increases transmission

Influenza, Coronavirus, Malaria?, Polio

Frequency-dependent transmission
more individuals, no impact transmission

HIV, Malaria?
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Density- vs frequency-dependent transmission

Force of infection formula

λ(I ) = c I
N v with contact rate, probability of contact with infected individual, probability

that contact S←→ I leads to transmission

Two choices for contact rate:

1 c = k N
A : slope k of density-dependent contact rate per area A :

λ(I ) = k N
A v

I
N = k

Av︸︷︷︸
β

I = βI

2 c = k ′ constant, frequency-dependent contact rate:

λ(I ) = k ′v︸︷︷︸
β′

I
N = β′ I

N

Introduction 14 / 101



Density- vs frequency-dependent transmission

Force of infection formula

λ(I ) = c I
N v with contact rate, probability of contact with infected individual, probability

that contact S←→ I leads to transmission

1 density-dependent λ(I ) = βI

2 frequency-dependent λ(I ) = β′ I
N

If N constant: mathematically equivalent but β, β′

N different biological meaning

Begon et al.

Introduction 15 / 101
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Non-linear force of infection (foi)

linear λ(I ) ∼ I : mass action

quadratic λ(I ) ∼ I 2: panic behavior

Michaelis-Menten λ(I ) ∼ aI
b+I : a maximum rate,

b level of I by which half of λ reached, saturation

crowding λ(I ) ∼ aI 2

b+I 2
: saturation

intervention λ ∼ I
f (I ) , f > 0, f ′ ≥ 0

I

λ(I )
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Influenza outbreak in a boarding school: differential equation

Recurrence equation with time increment ∆ and t0 = 0:

S(t +∆) = S(t) + ∆ {−λ(I (t))S(t)} (1)

I (t +∆) = I (t) + ∆ {λ(I (t))S(t)− γI (t)} (2)

R(t +∆) = R(t) + ∆γI (t) (3)

(4)

First order differential equation, for all t ≥ 0:

lim
∆→0

S(t +∆)− S(t)

∆
=

dS

dt
= −λ(I )S

lim
∆→0

I (t +∆)− I (t)

∆
=

dI

dt
= λ(I )S − γI

lim
∆→0

R(t +∆)− R(t)

∆
=

dR

dt
= γI

Numerics 17 / 101
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Explicit first order Euler scheme for SIR model with linear foi

For equidistant time points 0 = t0 < t1 < · · · < tn write ∆ ≡ ∆t = ti+1 − ti , and
tk = k∆t:

S(ti+1) = S(ti ) + ∆
{
− β

N I (ti )S(ti )
}

(5)

I (ti+1) = I (ti ) + ∆
{

β
N I (ti )S(ti )− γI

}
(6)

R(ti+1) = R(ti ) + ∆γI (ti ) (7)

Group work: Solve the influenza SIR model numerically in R!

Create a sequence of time steps ti up to 15 days with step size ∆ = 0.5

Create data frame, first row is initial condition S = 762, I = 1,R = 0

β = 1.1, γ = 0.5, N = 763, try different β such that β
γ < 1 or β

γ > 1

Write a loop over i and plot the graph ti 7→ I (ti ) 01 ForwardEulerSIR.R
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Numerical schemes, generally speaking

Numerical scheme for ordinary differential equation

Given an ODE dx
dt = f (t, x) an (explicit one-step) scheme is given by continuous function

Φ(t, x , h) with mesh 0 = t0 < t1 < . . . tn = T and ∆t = ti+1 − ti s.th.

xk+1 = xk +∆tΦ(tk , x
k ,∆t)

Truncation error

The truncation error is Tk(∆t) = xk+1−xk

∆t − Φ(tk , x(tk),∆t)

lim
∆t→0

Tk(∆t) = dx
dt − Φ(tk , x , 0)

Numerics 19 / 101



Numerical schemes: Consistency, stability, convergence

Consistency

The scheme is consistent with the ODE if Φ(t, x , 0) = f (t, x)

Stability

The scheme is stable if x 7→ Φ(t, x , h) is globally Lipschitz (i.e. almost differentiable)

Convergence

The scheme is converging if the global error |xk − x(tk)| → 0 as ∆t → 0

Numerics 20 / 101



Numerical schemes: Convergence = Consistency + Stability

Dahlquist-Lax Theorem

Convergence ⇔ Consistency + Stability

Explicit Euler is convergent

Set Φ(tk , x
k , h) = f (tk , x

k), for h ∈ [0,H], t ∈ [0,T ]. Discuss why this scheme is
convergent!

Remember from highschool: Taylor expansion
Any smooth function φ can be written locally around a point a:

φ(x) = φ(a) + (x−a)
1!

d
dxφ(a) +

(x−a)2

2!
d2

dx2
φ(a) + . . .

Numerics 21 / 101



Numerical schemes: Higher order

Apply Taylor to solution curve t 7→ x(t) at discretization points tk :

x(tk+1) = x(tk +∆t) = x(tk) +
∆t
1!

d
dt x(tk) +

(∆t)2

2!
d2

dt2
x(tk) + . . .

since d
dt x(tk) = f (t, x(tk)), and

d2

dt2
x(tk) =

∂f
∂t (t, xk) +

∂f
∂x (t, xk)

d
dt x(t, xk)

numeric scheme

x(tk+1) = x(tk) + (∆t)f (t, x(tk)) +
1
2(∆t)2

{
∂f
∂t (t, xk) +

∂f
∂x (t, xk)f (t, x(tk))

}
Second order for SIR model

Calculate the second order term of the scheme for each component of the SIR model
and add it to the R code! Idem for the SIR model with quadratic force of infection
function! Compare!
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Implicit numerical schemes: Trapezoidal rule

Second order scheme: accurate, but f needs to be differentiable ⇒ integral equation:

x(tk+1) = x(tk) +

∫ tk+1

tk

f (s)ds

Left endpoint rule:
∫ tk+1

tk
f (s)ds ≈ (∆t)f (tk) with (forward Euler) scheme:

x(tk+1) = x(tk) + (∆t)f (tk , x
k)
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Implicit numerical schemes: Trapezoidal rule

Trapezoidal rule:
∫ tk+1

tk
f (s)ds ≈ (∆t)12 (f (tk , x(tk)) + f (tk+1, x(tk+1))) with implicit

scheme
x(tk+1) = x(tk) + (∆t)12

(
f (tk , x

k) + f (tk+1, x
k+1)

)
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Implicit numerical schemes: Trapezoidal rule

Group A work: Solve influenza SIR model numerically in R!

Solve the SIR model numerically using the function ode in the package deSolve
(e.g. find syntax on stackoverflow or ChatGPT)

look up in the help menu ?ode different methods and their required parameters
02 deSolveSIR.R

Group B work: Do-it-yourself trapezoidal scheme!

Solve the SIR model numerically by implementing the trapezoidal scheme in R!
Don’use ChatGPT you can use ChatGPT, but explain the result.
03 SIR trapezoidal.R
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Serial interval, generation time, incubation time

The figure below from Lehtinen et al. shows between infector i and infectee j :

G , generation time: time
between infection of i and j

S , serial interval: time
between symptom onset of i
and j

I , incubation time: time
between infection of i and
symptom onset of j

Generation time and serial interval

Which of the three quantities G ,S , I can be negative? What is the epidemiological
meaning in this case? Can you give an example?
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Influenza outbreak in a boarding school: difference equation

time increments ti = i ∈ N

generation time distribution g : N→ [0, 1], i.e. g(k) is probability of a primary infection
causing a secondary infection after k time steps

force of infection λ(I )(i) = β
∑

k
I (i−k)
N(i−k)g(k), non-Markovian

Difference equation: β, γ are probabilities

S(i + 1) = S(i)− λ(I )(i)S(i)

I (i + 1) = I (i) + λ(I )(i)S(i)− γI (i)

R(i + 1) = γI (i)
Update for next time step depends not only on now, but also past events!
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Influenza outbreak in a boarding school: events

event: infectious individual arrives
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Influenza outbreak in a boarding school: events

event: movement
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Influenza outbreak in a boarding school: events

event: infectious individuals transmits, two infected
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Influenza outbreak in a boarding school: events

event: the first infected individual recovers
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Why stochastic dynamics?

Many phenomena in biology are intrinsically random and multi-scale!

microbiology biophysics

individual to population

stochastic algorithms need rules, not explicit functions, flexible!

stochastic algorithms explore probabilistic questions: extinction, criticality
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Why randomness in mathematics?

”mean-field approximation” of deterministic equations by stochastic algorithm

Law of Large Numbers (LLN)

Mean of iid samples converges to expected
value!
Xi iid r.v., then

lim
n→∞

1
n (X1 + . . .Xn) = E(X1)

strong LLN: a.s. convergence
weak LLN: convergence in probability
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Why randomness in mathematics?

”mean-field approximation” of deterministic equations by stochastic algorithm

Central Limit Theorem (CLT)

Rescaled mean of iid samples with equal
variance has Gaussian law as limit
distribution!
Xi iid r.v. with var(Xi ) = σ2, and Y r.v.
with law N (0, σ2), then

lim
n→∞

√
n 1
n (X1 + . . .Xn) = Y

CLT: convergence in probability

Stochastics 31 / 101



Probability theory primer

stochastic=random=aleatory=chance=?

axioms of probability: universe+events+probability

universe Ω: things, e.g. head, tail or infection, recovery

events F , what can happen with things, e.g. head/tail in coin toss

probability P : (Ω,F)→ [0, 1]

Axiom 1 P(Ω) = 1

Axiom 2 For any event E : P(E ) = 1− P(Ω \ E )
Axiom 3 if Ei disjoint, then P (

⋃
i Ei ) =

∑
i P(Ei )

random variable (r.v.) X : (Ω,F ,P)→ (A,A) measurable

probability law of r.v. fX : (A,A)→ [0, 1] with
f (A) = P(X−1(A)) = P(E ∈ F : X (E ) = A) for A ∈ A
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Probability theory primer

Coin toss

Write down a fair coin toss as a r.v. using the definitions from above!

Discrete & continuous r.v.

discrete r.v. universe is countable or finite

Ω = {0, 1} and fX ({1}) = p ∈ [0, 1] ”Bernoulli”

Ω = {0, 1, . . . } and fX ({k}) = e−λ λk

k! ”Poisson”

continuous r.v. universe is uncountable

Ω = R+ and fX ([0, a)) = λ
∫ a
0 e−λydy , but fX ({b}) = 0!

”exponential distribution”
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From random events to stochastic dynamics

observable φ : A→ R, then φ(X ) observable

expectation : E(φ(X )) :=
∑

z φ(y)fX (y) resp.
∫
A φ(y)fX (y)dy

moments f (x) = xn, then E(X n) is nth-moment, moments fully determine
probability law of r.v.!

independence X ,Y r.v. are independent X ⊥ Y , iff
P({X ∈ A} ∩ {Y ∈ B}) = P(X ∈ A)P(Y ∈ B)

iid X ,Y iid if independent, identically distributed

Warm-up

Calculate the expectation of Bernoulli and exponential r.v.!
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From random events to stochastic dynamics

stochastic process collection of r.v. indexed by time: t 7→ X (t)

filtration Ft collection of sets of events indexed by time, information about X (t)
that is available up to time t

convergence almost sure → in probability → in expectation

Markov property P(Xt+a ∈ A|Ft) = P(Xt+a ∈ A|σ(Xt))
”what happens in the future depends only on the present state”

Markov chain P(Xn+1 = xn+1|Xn = xn, . . . ,X1 = x1) = P(Xn+1 = xn+1|Xn = xn)
”what happens in the future depends only on the present state”
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From memory-less processes to differential equations

The r.v. X in R+ is without memory if:

P(X > t + s|X > s) = P(X > t)

with
P(A|B) = P(A∩B)

P(B)

⇐⇒
P(X > t + s) = P(X > t)P(X > s)

⇐⇒ functional equation:

P(X > a) = P(X > 1)a = e log(P(X>1))a = e−λa

Memory-less r.v.

X r.v. without memory ⇐⇒ X exponentially distr. with λ = − log(P(X > 1))
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Random number generation: the physical way

buy the book...
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Random number generation: the physical way

...or move your mouse: hardware random number generator
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Random number generation: the algorithmic way

pseudo-random number generator: linear congruence, Mersenne Twister

quasi-random number generator: low-discrepancy sequence

statistical tests of randomness

seed of random number generation, index used to ”replicate” simulation

cumulative distribution function (cdf) FX (t) = P(X ≤ t), inverse cdf (icdf) F−1
X

inverse transform sampling

X real-valued r.v. and U uniformly distributed r.v. on [0, 1], then r.v. F−1
X (U) ∼ X
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Generating random samples

Sample from exponential distribution

random draws for r.v. X ∼ Exp(λ) by using uniformly distributed random numbers
in the interval [0, 1]

cdf FX (t) = 1 − e−λt ⇒ icdf F−1
X (t) = − log(−(t − 1))/λ = log(1−t)

−λ
04 inversesampling.R

Sample from standard normal distribution

random draws for r.v. X ∼ N (0, 1) by using uniformly distributed random numbers
in the interval [0, 1]
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Generating random samples

Sample from discrete set

X is r.v. with values in discrete set K = {k1, k2, . . . } with P(X = ki ) = pi such that∑
i pi = 1.

Define g : [0, 1]→ K with
g(x) = kj ⇔

∑j−1
i=1 pi < x ≤

∑j
i=1 pi

If U ∼ uniform, then X ∼ g(U):

P(g(U) = kj) = P
(∑j−1

i=1 pi < U ≤
∑j

i=1 pi

)
= pj
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How to measure computational complexity

Landau notation: f (n) = O(g(n)) for n→∞ if
there are M, n0 > 0 such that for all n ≥ n0:

|f (n)| ≤ Mg(n)

e.g. f (n) = 5n3 + n + 5⇒ f (n) = O(n3)
runtime of algorithm: input size n, algorithm needs
O(g(n)) computation time for solution

e.g. binary search in list of size n has logarithmic
run time, i.e. algorithm needs O(log n)
computation steps for solution
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Benchmarking and profiling computer programs

Benchmarking: compare the computing time of programs with same input/output

Recursive vs dynamic programming

The Fibonacci numbers are defined by the recursion:

F1 = 1,F2 = 1,Fn = Fn−1 + Fn−2

for n > 2. Calculate Fn by both recursive and dynamic programming (i.e. using
already stored numbers). Use the R package microbenchmark to benchmark both
functions and system.time to calculate the runtime as a function of n. What do
you observe? 05 benchmarking.R
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Benchmarking and profiling computer programs

Profiling: diagnosing required memory, frequency and duration of functional calls for
each line of your computer code

Profiling

Use the R function Rprof to profile both implementations of the Fibonacci number
calculations. What do you observe? 06 profiling.R

Cyclomatic complexity: number of linearly independent paths through code

Cyclomatic complexity

Use the R package cyclocomp to profile both implementations of the Fibonacci
number calculations. What do you observe? What are your conclusion?
07 cyclocomp.R
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Biochemical reaction networks

species S: chemical compounds whose dynamics we model

complexes C: nonnegative linear combinations of species (i.e. interactions)

reactions R: how to convert one complex into another

Example

S = {A,B,C}, C = {A+ B, 2B,C , ∅},R = {A+ B → 2B,B → C ,C → ∅}

A+ B → 2B: A active, B inactive form of protein, B catalyzes A

B → C : B undergoes conformational change to become C

C → ∅: C is degraded
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Stoichiometry

R = {yk → y ′k ; yk , y
′
k ∈ C} with yk ≡

∑
i yk,iSi

stoichiometric vectors of network: ζk := y ′k − yk ∈ Zn

Example

S = {A,B,C}, C = {A+ B, 2B,C , ∅},R = {A+ B → 2B,B → C ,C → ∅}

ζ1 = [0, 2, 0]− [1, 1, 0] = [−1, 1, 0]
ζ2 = [0, 0, 1]− [0, 1, 0] = [0,−1, 1]
ζ3 = [0, 0, 0]− [0, 0, 1] = [0, 0,−1]
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Counting processes via Poisson
Counting process:

t 7→ N(t) ∈ N such that N(0) = 0, N constant except jumps of size +1.

Poisson (point) process

Counting process such that

N(0) = 0

independent increments, i.e. N(tk+1)− N(tk) are independent r.v. for
0 < t1 < · · · < tk+1

distribution of N(t +∆)− N(t) does not depend on t

it follows: P(N(t) = k) = (λt)k

k! e−λt ”number of arrivals until time t”

jump time Sk = min{t : N(t) ≥ k}, then Sk − Sk−1 ∼ Exp(λ)
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Poisson process
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Counting processes and biochemical reactions

Rk(t) counting process for occurrences of reaction k by time t

dynamical system of molecules

X (t) = X (0) +
∑
k

Rk(t)ζk

Reaction dynamics as Markov jump processes

Let λk : NS → R+ be intensity function of reaction k for given molecular state.
The counting processes Rk can we represented by iid Poisson processes Yk with
intensity 1 such that for intensity function λk : NS → R+:

Rk(t) = Yk(

∫ t

0
λk(X (s))ds)

Anderson& Kurtz, chapter 1, pp5
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Mass-action kinetics

Mass-action kinetics, seen by the chemist

At constant temperature, the rate of chemical reaction is directly proportional to
the product of molar concentrations of reacting species.

Mass-action kinetics, seen by the mathematician

λk(x) = κk
∏
i

xi !

(xi − yki )!

xi = #species i , yki = #species i needed for reaction k , ”falling factorial”
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Beyond mass-action kinetics

Beyond mass-action kinetics

Think of physical or chemical reasons that could prevent the validity of the principle
of mass-action!

Beyond mass-action kinetics

Explain the concept of cooperative binding and how it would change the assump-
tions on biochemical reaction dynamics!

Beyond mass-action kinetics

Can you give an example for non-mass-action kinetics in epidemic processes?

Stochastics Biochemical reaction systems 51 / 101



Beyond mass-action kinetics

Beyond mass-action kinetics

Think of physical or chemical reasons that could prevent the validity of the principle
of mass-action!

Beyond mass-action kinetics

Explain the concept of cooperative binding and how it would change the assump-
tions on biochemical reaction dynamics!

Beyond mass-action kinetics

Can you give an example for non-mass-action kinetics in epidemic processes?

Stochastics Biochemical reaction systems 51 / 101



Beyond mass-action kinetics

Beyond mass-action kinetics

Think of physical or chemical reasons that could prevent the validity of the principle
of mass-action!

Beyond mass-action kinetics

Explain the concept of cooperative binding and how it would change the assump-
tions on biochemical reaction dynamics!

Beyond mass-action kinetics

Can you give an example for non-mass-action kinetics in epidemic processes?

Stochastics Biochemical reaction systems 51 / 101



Epidemics as biochemical reaction systems

stoichiometrically admissible: λk(x) = 0 if xi < yk,i for all i (e.g. for A+ B → 2B we
need at least one A and one B for the reaction to happen)

Reaction Intensity function Rate molecular

A+ B → 2B λ1(x) = κ1x1x2 κ1 catalysis of protein inactivation
B → C λ2(x) = κ2x2 κ2 conformational change
C → ∅ λ3(x) = κ3x3 κ3 degradation

Reaction Intensity function Rate molecular epi

S + I → 2I λ1(S , I ,R) = βSI β catalysis of protein inactivation new infections
I → R λ2(S , I ,R) = γI γ conformational change recovery
R → ∅ λ3(S , I ,R) = δR δ degradation death
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Epidemics as biochemical reaction systems via Poisson processes

Reaction Intensity function Rate Stoichiometry ζ epi

S + I → 2I λ1(S , I ,R) = βSI β [−1, 1, 0] new infections
I → R λ2(S , I ,R) = γI γ [0,−1, 1] recovery

time evolution of molecules per species is given by solution of the equation

X (t) = X (0) + Y 1(

∫ t

0
λ1(Xs)ds)ζ1 + Y 2(

∫ t

0
λ2(Ys)ds)ζ2

S(t)I (t)
R(t)

 =

S(0)I (0)
R(0)

+ Y 1(

∫ t

0
βS(s)I (s)ds)

−11
0

+ Y 2(

∫ t

0
γI (s)ds)

 0
−1
1
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Group work: simulate variations of the SIR models

For each of the examples draw the flow diagram for the disease dynamics, write the
biochemical reaction network and stochiometric vectors!

Incubation period

From exposure to infectiousness, 5 days pass on average. Add a compartement for
exposed but not yet infectious hosts!

Ebola-like dynamics

In addition to the basic model used for influenza, we consider also a fraction p of
individuals to die from the disease. Contact of susceptibles with dead bodies before
burial will lead to additional infections.
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Group work: simulate variations of the SIR models

For each of the examples draw the flow diagram for the disease dynamics, write the
biochemical reaction network and stochiometric vectors!

Two rooms in the dorm

In the boarding school there is a respiratory disease outbreak among the students.
All of them live together in the same building, but there are two dormitories A and
B. Students living in B prefer to visit those living in A, but not so much the other
way around. We have seen the following contact rates:

A
0.1−→ B B

0.5−→ A A
1−→ A B

1−→ B
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Group work: solutions

For infectivity βA > βB and recovery rate γ,
the flow diagram reads:

SA IA RA

SB IB RB

βA
γ

βB
γ

βA
βB

The species are {SA, IA,RA,SB , IB ,RB}, the
complexes are {SA + IA, 2IA,RA,SB +
IB , 2IB ,RB , SA + IB , IA + IB , SB + IA}, the
reactions are R1 : SA + IA → 2IA,
R2 : IA → RA, R3 : SB + IB → 2IB ,
R4 : IB → RB , R5 : SA + IB → IA + IB ,
R6 : SB + IA → IA + IB and the stoichiometric
matrix is

−1 0 0 0 −1 0
−1 −1 0 0 +1 0
0 +1 0 0 0 0
0 0 −1 0 0 −1
0 0 +1 −1 0 +1
0 0 0 +1 0 0


Stochastics Biochemical reaction systems 56 / 101



From Markov jump processes to differential equations

replace molecule numbers X (t) by concentration C (t) = 1
NX (t)

N total number of molecules at given volume (e.g. Avogadro’s number × volume v , or
total population)

reaction rate inversely proportional to volume

Concentration dynamics

CN(t) = CN(0) +
∑
k=1

N−1Yk(N

∫ t

0
λk(C

N(s))ds)ζk
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From Markov jump processes to differential equations

replace molecule numbers X (t) by concentration C (t) = 1
Nv

X (t)

Nv total number of molecules at given volume (e.g. Avogadro’s number × volume v , or
total population)

reaction rates vary inversely with volume

Concentration dynamics
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N−1
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0
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From Markov jump processes to differential equations

what happens if N →∞?

F (x) :=
∑

k λk(x)ζk globally Lipschitz
deterministic integral equation

x(t) = x(0) +

∫ t

0
F (x(s))ds (8)

Convergence theorem

lim
N→∞

P(sup
s≤t
|CN(s)− x(s)| ≥ ϵ) = 0

for each ϵ, t > 0, weak law of large numbers

Proof built on Gronwall & Doob inequalities and martingale theory: Anderson &
Kurtz, page 44f
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Biochemical reaction systems: summary

species of molecules can form complexes, and changes between complexes define
reactions

reactions can be described by stoichiometric vectors

under the mass action assumption, the rate of reaction is proportional to the number of
molecules involved

the evolution of molecules over time can be described mathematically as a Poisson process

molecular concentrations converge towards deterministic limit as number of molecules
goes to infinity
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Biochemical reaction systems: summary

Back to epidemic processes

For the simple SIR model, show that assumptions of the convergence theorem are
satisfied.

Write explicitly the integral equation (8) and show how it relates to the
ODE system.
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Gillespie’s algorithm: direct method

Simulate systems of biochemical reactions (e.g. susceptible meets infectious), assuming no
more than two individuals at a time are involved in the reaction or events:

1 reminder:

X (t) = X (0) + Y 1(

∫ t

0
λ1(Xs)ds)ζ1 + Y 2(

∫ t

0
λ2(Ys)ds)ζ2

2 suppose transition times between states ti , define X (t) = X (tk) for t ∈ [tk , tk+1)

3 initial condition X (0) = x0

1 for t = tk calculate λk(Xt) for all k

2 τ time to next event follows Exp(
∑

k λk(Xt))

3 next event K sampled with λk (Xt)∑
k λk (Xt)

4 update time: tk+1 = tk + τ

5 update state: X (tk+1) = Xtk + ζK
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Gillespie’s algorithm: direct method for SIR

1: Initial trajectory T = (t, S , I ,R) = (0, 762, 1, 0)
2: while I > 0 do
3: Current state S last row of T , S = S[2], I = S[3],R = S[4]
4: possible events vector: E = (new infection, . . . , new infection︸ ︷︷ ︸

S times

, clearance, . . . , clearance︸ ︷︷ ︸
I times

)

5: rates vector: λ = (βI/N, . . . , βI/N︸ ︷︷ ︸
S times

, γ, . . . , γ︸ ︷︷ ︸
I times

)

6: time to next event: draw sample τ from Exp(
∑

i λi )
7: choose next event: sample from E with probability λi∑

i λi

8: if next event is ”new infection” then
9: S ← S + (τ,−1, 1, 0)

10: else if next event is ”clearance” then
11: S ← S + (τ, 0,−1, 1)
12: end if
13: T ← [T ,S]
14: end while
15: return T
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Gillespie’s direct method for influenza SIR model

write the Gillespie direct method in R for an SIR model

use the optimal parameters obtained for the ODE system: β = 1.6692258, γ = 0.4434502

perform 100 realizations of the stochastic process and compare to the ODE solution

does the law of large numbers hold?

08 GillespieDirect.R
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Gillespie’s direct method for influenza SIR model

0

100

200

300

0 5 10 15 20
time

I

ODE
data
stochastic

What happens if you choose β = 0.7?
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Gillespie’s algorithm: first reaction method for SIR

1: Initial trajectory T = (t, S , I ,R) = (0, 762, 1, 0)
2: while I > 0 do
3: Current state S last row of T , S = S[2], I = S[3],R = S[4]
4: possible events vector: E = (new infection, . . . , new infection︸ ︷︷ ︸

S times

, clearance, . . . , clearance︸ ︷︷ ︸
I times

)

5: rates vector: λ = (βI/N, . . . , βI/N︸ ︷︷ ︸
S times

, γ, . . . , γ︸ ︷︷ ︸
I times

)

6: time to event i : draw sample τi from Exp(λi )
7: choose next event Eµ ∈ E : for µ = argmini τi
8: if next event is ”new infection” then
9: S ← S + (τµ,−1, 1, 0)

10: else if next event is ”clearance” then
11: S ← S + (τµ, 0,−1, 1)
12: end if
13: T ← [T ,S]
14: end while
15: return T
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Gillespie’s algorithm: tau-leap

direct method: sample time to next reaction, only one reaction per time step

tau-leap: fix time to next reaction τ > 0, sample several reactions

tau-leap assumption: rates of reactions do not change within [t, t + τ)

tau-leap: X (t + τ) = X (t) +
∑

j Pj(λjτ)

tau-leap: Pj(x) are independent Poisson random variables with intensity x

1 for each event j , sample Kj ∼ Poisson(λjτ) ”number of times of event”

2 update: S [t + τ ] = S [t] +
∑

j Kjvij for vij stoichiometric vector, state i , event j

really fast, τ can be optimized, check assumptions!

09 GillespieTau.R

Stochastics Stochastic simulation algorithms 67 / 101



Group work: simulate variations of the SIR models

Simulate SIR variations with Gillespie

For the three models from the group work (incubation period, Ebola-like and two rooms
in dormitory) use the R package GillespieSSA to simulate trajectories! Play around
with parameters!
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Gibson-Bruck method: speed up Gillespie with data structures

Problem: model with structure for age, location, immunity, network, etc. has many
different species and possible reactions ⇒ Gillespie slow: two random number draw per
iteration, event/rate updates

Solution: Gibson-Bruck algorithm with data structure

dependency graph between events ⇒ event/rate update

indexed priority queue of event times ⇒ single random number draw needed
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Gibson-Bruck method: dependency graph

node reaction propensity affects depends event

1 S + I → I + I βS(t)I(t)a I , S I , S new infection
2 I → R γI(t) I ,R I clearance
3 I → ∅ νI(t) I I virulence
4 ∅ → S π S ∅ birth
5 R → S ρR(t) R,S R immunity loss

aI(t) denotes sum of all I at time t etc.

1

2 3

4

5
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5

dependency graph: draw edge Eij iff affects(i) ∩ depends(j) ̸= ∅
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Gibson-Bruck method: dependency graph

node reaction propensity affects depends event

1 S + I → I + I βS(t)I(t)a I , S I , S new infection
2 I → R γI(t) I ,R I clearance
3 I → ∅ νI(t) I I virulence
4 ∅ → S π S ∅ birth
5 R → S ρR(t) R,S R immunity loss

aI(t) denotes sum of all I at time t etc.

1

2 3

4

5

dependency graph: draw edge Eij iff affects(i) ∩ depends(j) ̸= ∅
update: reaction i happens → propensity update for Ui = {j : Eij ̸= 0}
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Gibson-Bruck method: indexed priority queue

priority queue: data structure such that elements with highest priority are served first

binary heap: complete binary tree, key stored in each node is either less than or equal to
the keys in the node’s children

O(logn) performance for inserts and removals, and O(logn) to build heap from n elements

10 12 17 25 32

10

12 17

25 32

Stochastics Stochastic simulation algorithms 71 / 101



Gibson-Bruck method: algorithm

1: set t = 0; generate dependency graph D of reactions; calculate propensity function
αi for each reaction i = 1, ...,M; draw τi ∼ Exp(αi ); write absolute time ti = t+τi
in an indexed priority queue given by heap Q.

2: while t < tmax do
3: choose next reaction Rµ with µ root in Q
4: update stoichiometry, i.e. copy number of molecules after reaction Rµ, set

t = tµ
5: update reaction rates αi for i ∈ Uµ using D
6: update next reaction times in Q for updated αi without new random number

draw:
ti ,new =

αi ,old

αi ,new︸ ︷︷ ︸
τi,new

(ti ,old − t) + t

7: end while
8: return trajectory for each species and reaction times

StochPy on

Stochastics Stochastic simulation algorithms 72 / 101



Malaria toy model: Gillespie-type simulation

α host seeking and biting rate by (female)
mosquito

γ recovery rate from human infection

β acquisition rate from infectious host to
susceptible mosquito

µ mosquito birth rate (from both
susceptible and infected mosquitoes)

δ death rate of adult mosquito
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Malaria toy model: Gillespie-type simulation

dS

dt
= −αS V

H
+ γI

dI

dt
= αS

V

H
− γI

dU

dt
= −βU I

H
+ µ(U + V )− δU

dV

dt
= βU

I

H
− δV
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Malaria toy model: Gillespie-type simulation

Where does the term V
H come from?

α host seeking and biting rate

then, α(U + V ) is expected number of bites
α(U+V )

H are expected number of bites per human

multiply with infectious mosquito density V
U+V gives

V
U+V

α(U+V )
H = αV

H

dS

dt
= −αS V

H
+ γI

dI

dt
= αS

V

H
− γI

dU

dt
= −βU I

H
+ µ(U + V )− δU

dV

dt
= βU

I

H
− δV
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Malaria toy model: Gillespie-type simulation

dS

dt
= −αV S

H
+ γI

dI

dt
= αV

S

H
− γI

dU

dt
= −βU I

H
+ µ(U + V )− δU

dV

dt
= βU

I

H
− δV

4 species: S, I, U, V

7 reactions: S + V → I + V , I → S ,
U + I → V + I , U → ∅, V → ∅, U → 2U,
V → U + V

7 intensities: α S
H , γI , β

U
H , δU,δV , µU,

µV ,

stoichiometry 4× 7 matrix:
−1 1 0 0 0 0 0
1 −1 0 0 0 0 0
0 0 −1 −1 0 1 1
0 0 +1 0 −1 0 0
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Malaria toy model: Gillespie-type simulation

For this model, the basic reproduction number is

R0 =

√
αβ(U + V )/H

µγ

Malaria toy model

Simulate with GillespieSSA and obtain an endemic equilibrium!
Choose H = 1000, U +V = 5000, µ = δ = 1/10, β = α = 0.03 and search some values
for γ in literature! Change the ratio of mosquito M = U + V to human H = S + I !
Plot the curve of infected humans over two year!

10 RossMcDonaldGillespie.R
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Malaria toy model: Gillespie-type simulation

dS

dt
= −αV S

H
+ γI

dI

dt
= αV

S

H
− γI

dU

dt
= −βU I

H
+ µ(U + V )− δU

dV

dt
= βU

I

H
− δV
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Asymptomatic Malaria toy model: Gillespie-type simulation

Asymptomatic infections

Based on our Malaria toy model, we consider three classes of infected populations: con-
firmed cases Ic who are treated before gametocytemia, asymptomatic with high game-
tocytemia Ih and and asymptomatic with low gametocytemia Il . We assume that hosts
with high/low gametocytemia have a transmission rate βh, βl . The duration of infection
with positive gametocytemia for Ic , Ih, Il is 10, 45, 15 days resp.
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Asymptomatic Malaria toy model: Gillespie simulation

Andolina et al. 2021: The bar heights indicate the proportion of mosquitoes that became

infected when feeding on this population. The bar widths indicate the proportion of the infected

population.

Asymptomatic infections

Use the figure to discuss param-
eters for proportions of Ic , Ih, Iℓ
and the ratio of βh over βℓ.
Draw the flow diagram, use pa-
rameters from the toy model,
write the reactions, rates and
stoichiometric vectors. Simu-
late the dynamics of infection
compartments with the Gille-
spie algorithm!
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Asymptomatic Malaria toy model: Gillespie simulation

Proposed solution:

New infections: Exposure to infectious mosquitoes V creates new infections in Ic , Ih, Iℓ at
rate αc = pcα, αh = phα and αℓ = pℓα where EIR α = 2 and
[pc , ph, pℓ] = [0.05, 0.17, 0.78] the relative proportion of confirmed/treated, high and low
parasitemia infections after a mosquito bite.

clearance rates for human infections are γc = 1/10, γh = 1/45, γℓ = 1/15.

For transmission from humans to vectors, we assume that βc = 0.03 and βh = 0.08 and
βℓ = Kβh for K = 0.84/0.16, i.e. the transmission ratio into Ih vs Ic infections.

The life-cycle for the mosquitoes populations remains as in the toy-model before.

11 RossMcDonaldGillespieAsymptomatic.R
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Asymptomatic Malaria toy model: biochemical reaction system
1 S + V → Ic + V at rate αpc

S
H

2 S + V → Ih + V at rate αph
S
H

3 S + V → Iℓ + V at rate αpℓ
S
H

4 Ic → ∅ at rate γc
5 Ih → ∅ at rate γh
6 Iℓ → ∅ at rate γℓ
7 U + Ic → V + Ic at rate βc

U
H

8 U + Ih → V + Ih at rate βh
U
H

9 U + Iℓ → V + Iℓ at rate βℓ
U
H

10 U → ∅ at rate δ

11 V → ∅ at rate δ

12 U → U + U at rate µ

13 V → U + V at rate µ

S

Ic

Ih

Iℓ

V U∅ ∅

γc

γh

γℓ

αpc
S
H

αph
S
H

αpℓ
S
H

δ

µ
δ

µ

βc
U
H

βh
U
H

βℓ
U
H
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Asymptomatic Malaria toy model: Gillespie simulation

With initial conditions H = 10000, Ic(t) = 20, Ih(0) = 5, Iℓ(0) = 10 and V (0) = 8 and
U(0) = 49992, we obtain an endemic equilibrium of confirmed cases prevalence at roughly 3%,
while a large part of the population is infected without symptoms at low-level parasitemia:
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Asymptomatic Malaria intervention toy model: Gillespie simulation

Test and treat vs. mass drug administration

For the asymptomatic model, we want to evaluate two different intervention strategies:

test and treat: the antigen-based diagnostics has a sensitivity to detect 95% of
asymptomatic cases with high gametocytemia and 15% with low gametocytemia,
all positively tested are treated.

mass drug administration: 95% of the entire population gets drug treatment,
regardless of infection status

Simulate trajectories for the two strategies and the counterfactual starting from the endemic
equilibrium obtained from the preceding exercise!
What is your metric of evaluation and which intervention would you recommend?
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Asymptomatic Malaria intervention toy model: reaction system

For test and treat we assume that
both Ih and Iℓ move to treated
compartment T . For mass drug
administration, we also assume that
S move into T .

14 Ih → T at rate Th

15 Iℓ → T at rate Tℓ

16 S → T at rate M

17 T → S at rate r = 1/30

12 RossMcDonaldGillespieAsymptomatic TTvsMDA.R

T

S

Ic

Ih

Iℓ

V U∅ ∅

γc

γh

γℓ

αpc
S
H

αph
S
H

αpℓ
S
H

δ

µ
δ

µ

βc
U
H

βh
U
H

βℓ
U
H

M

Th

Tℓ

r
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Asymptomatic Malaria intervention toy model: Gillespie simulation

test and treat: Th = 0.95, Tℓ = 0.15 and M = 0, r = 1/30

MDA: Th = Tℓ = M = 0.98, r = 1/30

Prevalence is close to 0 within 3 months, test sensitivity for Iℓ is crucial to achieve elimination.
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Stochastic differential equation heuristics

consider SIR stochastic process X (t) = [S(t), I (t)] s.th. for X (t) = E(X (t))

dS

dt
= −βS I

N

dI

dt
= βS

I

N
− γI

divide time interval [0, t] into subintervals of length ∆t, with

∆X (t) = [∆S(t),∆I (t)] = [S(t +∆t)− S(t), I (t +∆t)− I (t)]

further divide ∆t s.th. for ∆ti = ti − ti−1 :
∑n

i ∆ti = ∆t and

∆X (t) =
∑
i

∆X (ti )

if ∆ti small, assume ∆X (ti ) are iid on ∆t

for n large, CTL: 1√
n
(∆X (t)− E(∆X (t))) ∼ N (0, cov(∆X (t)))
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Stochastic differential equation heuristics

At the order of ∆t:

E(∆X (t)) ≈
[
−βS I

N
, βS

I

N
− γI

]
∆t = f∆t

At the order of ∆t:

cov(∆X ) ≈ E((∆X )(∆X )T ) =

(
cov(∆S ,∆S) cov(∆S ,∆I )
cov(∆S ,∆I ) cov(∆I ,∆I )

)

cov(∆X ) ≈
(

βS I
N −βS I

N

−βS I
N βS I

N + γI

)
∆t = C∆t
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Stochastic differential equation heuristics: covariance

By assumption ∆X (ti ) are iid on ∆t, and with ∆t = n∆ti s.th.

E(∆X 2
1 ) = E(∆S2) = E(

∑
i

∆S(ti )
2)

=
∑
i

E(∆S(ti )
2) + 2

∑
i<j

E(∆S(ti ))E(∆S(tj))

= nE(∆S(t0)
2) + n(n − 1)E(∆S(t0))

2

= n(−1)2∆t1βI (t0)
S(t0)
N + n 02 (1−∆t1βI (t1)

S(t1)
N ) + (∆t)2(1− 1

n )(βI (t1)
S(t1)
N )2

≈ ∆tβI (t0)
S(t0)
N

at the order of ∆t with P(∆S(ti ) = −1) = ∆tiβI (ti−1)
S(ti−1)

N
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Stochastic differential equation heuristics

Stochastic differential equation

∆X (t) ≈ f (X (t))∆t + G (X (t))∆W (t)

Here, the matrix G is such that GGT = C and

∆W = [∆W1,∆W2] with ∆Wi ∼ N (0,∆t)
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Euler-Maruyama algorithm for SIR

Euler-Maruyama algorithm

We implement
∆X (t) ≈ f (X (t))∆t + G (X (t))∆W (t)

by first order scheme

X [i + 1] = X [i ] + f (X [i ])∆t + G (X [i ])η
√
∆t

where η ∈ Rd with ηk ∼ N (0, 1) and d is the number of reactions.
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Euler-Maruyama algorithm for SIR

In our SIR example:

f (S , I ) =

(
−βS I

N

βS I
N − γI

)

G (S , I ) =

−√βS I
N 0√

βS I
N −

√
γI


Just take square roots of the rates from the ODE!

Implementation of Euler-Maruyama

Code the Euler-Maruyama scheme in R for the influenza boarding school SIR model!
Simulate several trajectories! When choosing β > γ, do you have simulations where I
get extinct early on? 13 ForwardEulerMaruyamaSIR.R
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Euler-Maruyama algorithm for SIR
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Malaria toy model with stochastic differential equation

dS = f1dt −
√

αV
S

H
dW 1 +

√
γI dW 2

dI = f2dt +

√
αV

S

H
dW 1 −

√
γI dW 2

dU = f3dt −
√
βU

I

H
dW 3 +

√
µUdW 4 +

√
µVdW 5 −

√
δUdW 6

dV = f4dt +

√
βU

I

H
dW 3 −

√
δVdW 7

Euler-Maruyama for Malaria toy model

Implement the stochastic differential equation version of the Malaria toy model in R.
14 RossMcDonaldForwardEulerMaruyama.R
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Euler-Maruyama for Malaria toy model
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Sellke’s method: infectious pressure

probabilistically equivalent to SIR process

iid Q1, . . . ,Qn ∼ Exp(1) for n susceptibles

iid T−(m−1), . . . ,Tn infection durations, any
distribution on R+ (e.g. gamma, Weibull)

m initially infected T−(m−1), . . . ,T0

I (t) =number of infected at time t

infectious ”pressure” Λ(t) =
∫ t
0 I (s)ds

infection time
t1                             t2  t3      t4                t5

Q
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Sellke’s method: infectious pressure

susceptible i accumulates exposure to infection at rate equal to number of infected
individuals

ith susceptible becomes infected by time ti if infectious pressure reached: Λ(ti ) = Qi

individual who was jth infected remains infected for time Tj and then clears

infections happen at the right time:

P(susceptible i infected by t + dt|not infected by t) =

= P(Qi < Λ(t + dt)|Qi > Λ(t)) =
P(Λ(t) < Qi < Λ(t + dt))

P(Qi > Λ(t))

≈ (1− e−Λ(t+dt))− (1− e−Λ(t))

e−Λ(t)
= 1− e−[Λ(t+dt)−Λ(t)] = 1− e−Λ′(t)dt

= Λ′(t)dt = βI (t)dt

advantage: generalize straight-forward to infection duration with memory
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Stochastic simulation algorithms: summary table

algorithm time space conv non-Mark. in practice

exact Gillespie C D ✓ ✗ only for simple systems, slow

first reaction Gillespie C D ✗ ✗ no need to sample next reaction

tau-leap Gillespie D D ✗ ✗ fast for simple systems, step size tuning

Gillespie-Boguña C D ✗ ✓ only for simple systems, slow

Gillespie-Gibson-Bruck C D ✗ ✓ fast for system with many reactions

Sellke C D ✓ ✓ only for simple systems

Euler-Maruyama C C ✓ ✗ faster to simulate for large populations
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Lecture notes and resources

internet mathoverflow, stackoverflow, chatGPT, google colab

lecture notes Anderson, Kurtz: Stochastic Analysis of Biochemical Systems

lecture notes Allen: Stochastic Population and Epidemic Models

lecture notes Ammari, Wu, Yu: Numerical Methods for ODEs

history Ross: An Application of the Theory of Probabilities to the Study of a priori

pathometry. -Part I
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Articles

article Lehtinen et al.

article Begon et al.
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