Doctoral training school
 Methods in Malaria Modeling
 Simulation algorithms \& numerics for epidemiological models

Christian Selinger, christian.selinger@aims.ac.rw

Nov 13 - Dec 8, 2023

```
M\alphaMo\delta
            Africa
AIMS
```

AIMS Center Senegal, Mbour

Outline

(1) Introduction
(2) Numerics
(3) Stochastics

- Randomness from the computer
- Biochemical reaction systems
- Stochastic simulation algorithms

Question block

Discuss in class!

Important block
This is important!

Search block

Search and think outside the box (and the classroom)!
links to code in \mathbb{R} and ${ }^{\circ}$, further reading

Course web page

sites.google.com/aims.ac.rw/mamodafrica-trainingschool/week-3/ modsimul

Influenza outbreak in a boarding school: model hypotheses

- time series of symptomatic (i.e. infectious) cases

Influenza outbreak in a boarding school: model hypotheses

- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- homogeneous population
- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- homogeneous population
compartments for susceptible S, infectious I, recovered R individuals
- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- homogeneous population
compartments for susceptible S, infectious I, recovered R individuals
- closed population, no deaths
- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- homogeneous population
compartments for susceptible S, infectious I, recovered R individuals
- closed population, no deaths
constant population size, no births nor migration
- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- homogeneous population
compartments for susceptible S, infectious I, recovered R individuals
- closed population, no deaths
constant population size, no births nor migration
- well-mixed population
- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- homogeneous population
compartments for susceptible S, infectious I, recovered R individuals
- closed population, no deaths
constant population size, no births nor migration
- well-mixed population
mass action principle, force $\lambda(I)$ acting on mass S
- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- homogeneous population
compartments for susceptible S, infectious I, recovered R individuals
- closed population, no deaths
constant population size, no births nor migration
- well-mixed population
mass action principle, force $\lambda(I)$ acting on mass S
- denser population in dormitory \Rightarrow more infections
- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- homogeneous population
compartments for susceptible S, infectious I, recovered R individuals
- closed population, no deaths
constant population size, no births nor migration
- well-mixed population
mass action principle, force $\lambda(I)$ acting on mass S
- denser population in dormitory \Rightarrow more infections density-dependent (vs. frequency-dependent) force
- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- homogeneous population
compartments for susceptible S, infectious I, recovered R individuals
- closed population, no deaths
constant population size, no births nor migration
- well-mixed population
mass action principle, force $\lambda(I)$ acting on mass S
- denser population in dormitory \Rightarrow more infections density-dependent (vs. frequency-dependent) force
- full immunity upon recovery
- time series of symptomatic (i.e. infectious) cases ordinary differential equations/ Markov process, what happens next depends only on now
- homogeneous population
compartments for susceptible S, infectious I, recovered R individuals
- closed population, no deaths
constant population size, no births nor migration
- well-mixed population
mass action principle, force $\lambda(I)$ acting on mass S
- denser population in dormitory \Rightarrow more infections density-dependent (vs. frequency-dependent) force
- full immunity upon recovery recovered individuals cannot become susceptible again

- rate $=$ number of events happening within time step Δ

- rate $=$ number of events happening within time step Δ
- γ recovery rate from infection

- rate $=$ number of events happening within time step Δ
- γ recovery rate from infection
- $\lambda \equiv \lambda(I)$ force of infection rate

Recurrence equation with update linear in time increment Δ

$$
\begin{aligned}
S(t+\Delta) & =S(t)+\Delta\{-\lambda(I(t)) S(t)\} \\
I(t+\Delta) & =I(t)+\Delta\{\lambda(I(t)) S(t)-\gamma I\} \\
R(t+\Delta) & =R(t)+\Delta\{\gamma I(t)\}
\end{aligned}
$$

Initial condition

$$
\begin{aligned}
S(0) & =S_{0}<N \\
I(0) & =I_{0}>0 \\
R(0) & =0
\end{aligned}
$$

Force of infection
$\lambda(I)$ rate at which new infectious created from susceptible

Force of infection

$\lambda(I)$ rate at which new infectious created from susceptible

Density-dependent transmission

Per capita contact rate between susceptible and infected depends on the population density. Transmission rates increase with density.

Force of infection
$\lambda(I)$ rate at which new infectious created from susceptible

Density-dependent transmission
Per capita contact rate between susceptible and infected depends on the population density. Transmission rates increase with density.

Frequency-dependent transmission
Per capita contact rate between susceptible and infected does not depend on the population density. Transmission rates do not change with density.

Density- vs frequency-dependent transmission

Density- vs frequency-dependent transmission

Density-dependent transmission more individuals per area increases transmission

Frequency-dependent transmission more individuals, no impact transmission

Density- vs frequency-dependent transmission

Density-dependent transmission more individuals per area increases transmission

Influenza, Coronavirus, Malaria?, Polio

Frequency-dependent transmission more individuals, no impact transmission

Density- vs frequency-dependent transmission

Force of infection formula

$\lambda(I)=c \frac{I}{N} v$ with contact rate, probability of contact with infected individual, probability that contact $\mathrm{S} \longleftrightarrow$ I leads to transmission

Two choices for contact rate:
$1 c=k \frac{N}{A}$: slope k of density-dependent contact rate per area A :

$$
\lambda(I)=k \frac{N}{A} v \frac{I}{N}=\underbrace{\frac{k}{A} v}_{\beta} I=\beta I
$$

$2 c=k^{\prime}$ constant, frequency-dependent contact rate:

$$
\lambda(I)=\underbrace{k^{\prime} v}_{\beta^{\prime}} \frac{I}{N}=\beta^{\prime} \frac{I}{N}
$$

Density- vs frequency-dependent transmission

Force of infection formula

$\lambda(I)=c \frac{I}{N} v$ with contact rate, probability of contact with infected individual, probability that contact $\mathrm{S} \longleftrightarrow$ I leads to transmission

1 density-dependent $\lambda(I)=\beta I$
2 frequency-dependent $\lambda(I)=\beta^{\prime} \frac{I}{N}$
If N constant: mathematically equivalent but $\beta, \frac{\beta^{\prime}}{N}$ different biological meaning Begon et al.延

- linear $\lambda(I) \sim I$: mass action

- linear $\lambda(I) \sim I$: mass action
- quadratic $\lambda(I) \sim I^{2}$: panic behavior

- linear $\lambda(I) \sim I$: mass action
- quadratic $\lambda(I) \sim I^{2}$: panic behavior
- Michaelis-Menten $\lambda(I) \sim \frac{a l}{b+1}$: a maximum rate, b level of I by which half of λ reached, saturation

- linear $\lambda(I) \sim 1$: mass action
- quadratic $\lambda(I) \sim I^{2}$: panic behavior
- Michaelis-Menten $\lambda(I) \sim \frac{a l}{b+1}$: a maximum rate, b level of I by which half of λ reached, saturation
- crowding $\lambda(I) \sim \frac{a^{2}}{b+I^{2}}$: saturation

- linear $\lambda(I) \sim I$: mass action
- quadratic $\lambda(I) \sim I^{2}$: panic behavior
- Michaelis-Menten $\lambda(I) \sim \frac{a l}{b+1}$: a maximum rate, b level of I by which half of λ reached, saturation
- crowding $\lambda(I) \sim \frac{a^{2}}{b+I^{2}}$: saturation
- intervention $\lambda \sim \frac{1}{f(1)}, f>0, f^{\prime} \geq 0$
- Recurrence equation with time increment Δ and $t_{0}=0$:

$$
\begin{align*}
S(t+\Delta) & =S(t)+\Delta\{-\lambda(I(t)) S(t)\} \tag{1}\\
I(t+\Delta) & =I(t)+\Delta\{\lambda(I(t)) S(t)-\gamma I(t)\} \tag{2}\\
R(t+\Delta) & =R(t)+\Delta \gamma I(t) \tag{3}
\end{align*}
$$

- Recurrence equation with time increment Δ and $t_{0}=0$:

$$
\begin{align*}
S(t+\Delta) & =S(t)+\Delta\{-\lambda(I(t)) S(t)\} \tag{1}\\
I(t+\Delta) & =I(t)+\Delta\{\lambda(I(t)) S(t)-\gamma I(t)\} \tag{2}\\
R(t+\Delta) & =R(t)+\Delta \gamma I(t) \tag{3}
\end{align*}
$$

- Recurrence equation with time increment Δ and $t_{0}=0$:

$$
\begin{align*}
S(t+\Delta) & =S(t)+\Delta\{-\lambda(I(t)) S(t)\} \tag{1}\\
I(t+\Delta) & =I(t)+\Delta\{\lambda(I(t)) S(t)-\gamma I(t)\} \tag{2}\\
R(t+\Delta) & =R(t)+\Delta \gamma I(t) \tag{3}
\end{align*}
$$

- First order differential equation, for all $t \geq 0$:

$$
\begin{aligned}
& \lim _{\Delta \rightarrow 0} \frac{S(t+\Delta)-S(t)}{\Delta}=\frac{d S}{d t}=-\lambda(I) S \\
& \lim _{\Delta \rightarrow 0} \frac{I(t+\Delta)-I(t)}{\Delta}=\frac{d I}{d t}=\lambda(I) S-\gamma I \\
& \lim _{\Delta \rightarrow 0} \frac{R(t+\Delta)-R(t)}{\Delta}=\frac{d R}{d t}=\gamma I
\end{aligned}
$$

Explicit first order Euler scheme for SIR model with linear foi

For equidistant time points $0=t_{0}<t_{1}<\cdots<t_{n}$ write $\Delta \equiv \Delta t=t_{i+1}-t_{i}$, and $t_{k}=k \Delta t$:

$$
\begin{align*}
S\left(t_{i+1}\right) & =S\left(t_{i}\right)+\Delta\left\{-\frac{\beta}{N} I\left(t_{i}\right) S\left(t_{i}\right)\right\} \tag{5}\\
I\left(t_{i+1}\right) & =I\left(t_{i}\right)+\Delta\left\{\frac{\beta}{N} I\left(t_{i}\right) S\left(t_{i}\right)-\gamma I\right\} \tag{6}\\
R\left(t_{i+1}\right) & =R\left(t_{i}\right)+\Delta \gamma I\left(t_{i}\right) \tag{7}
\end{align*}
$$

For equidistant time points $0=t_{0}<t_{1}<\cdots<t_{n}$ write $\Delta \equiv \Delta t=t_{i+1}-t_{i}$, and $t_{k}=k \Delta t$:

$$
\begin{align*}
S\left(t_{i+1}\right) & =S\left(t_{i}\right)+\Delta\left\{-\frac{\beta}{N} I\left(t_{i}\right) S\left(t_{i}\right)\right\} \tag{5}\\
I\left(t_{i+1}\right) & =I\left(t_{i}\right)+\Delta\left\{\frac{\beta}{N} I\left(t_{i}\right) S\left(t_{i}\right)-\gamma I\right\} \tag{6}\\
R\left(t_{i+1}\right) & =R\left(t_{i}\right)+\Delta \gamma I\left(t_{i}\right) \tag{7}
\end{align*}
$$

Group work: Solve the influenza SIR model numerically in R!

- Create a sequence of time steps t_{i} up to 15 days with step size $\Delta=0.5$
- Create data frame, first row is initial condition $S=762, I=1, R=0$
- $\beta=1.1, \gamma=0.5, N=763$, try different β such that $\frac{\beta}{\gamma}<1$ or $\frac{\beta}{\gamma}>1$
- Write a loop over i and plot the graph $t_{i} \mapsto I\left(t_{i}\right) \mathbb{R}$ 01_ForwardEulerSIR.R

Numerical scheme for ordinary differential equation

Given an ODE $\frac{d x}{d t}=f(t, x)$ an (explicit one-step) scheme is given by continuous function $\Phi(t, x, h)$ with mesh $0=t_{0}<t_{1}<\ldots t_{n}=T$ and $\Delta t=t_{i+1}-t_{i}$ s.th.

$$
x^{k+1}=x^{k}+\Delta t \Phi\left(t_{k}, x^{k}, \Delta t\right)
$$

Truncation error

The truncation error is $T_{k}(\Delta t)=\frac{x^{k+1}-x^{k}}{\Delta t}-\Phi\left(t_{k}, x\left(t_{k}\right), \Delta t\right)$

$$
\lim _{\Delta t \rightarrow 0} T_{k}(\Delta t)=\frac{d x}{d t}-\Phi\left(t_{k}, x, 0\right)
$$

Consistency

The scheme is consistent with the ODE if $\Phi(t, x, 0)=f(t, x)$

Stability

The scheme is stable if $x \mapsto \Phi(t, x, h)$ is globally Lipschitz (i.e. almost differentiable)

Convergence
The scheme is converging if the global error $\left|x^{k}-x\left(t_{k}\right)\right| \rightarrow 0$ as $\Delta t \rightarrow 0$

Dahlquist-Lax Theorem

Convergence \Leftrightarrow Consistency + Stability

Explicit Euler is convergent

Set $\Phi\left(t_{k}, x^{k}, h\right)=f\left(t_{k}, x^{k}\right)$, for $h \in[0, H], t \in[0, T]$. Discuss why this scheme is convergent!

Remember from highschool: Taylor expansion
Any smooth function φ can be written locally around a point a :

$$
\varphi(x)=\varphi(a)+\frac{(x-a)}{1!} \frac{d}{d x} \varphi(a)+\frac{(x-a)^{2}}{2!} \frac{d^{2}}{d x^{2}} \varphi(a)+\ldots
$$

Numerical schemes: Higher order

- Apply Taylor to solution curve $t \mapsto x(t)$ at discretization points t_{k} :

$$
x\left(t_{k+1}\right)=x\left(t_{k}+\Delta t\right)=x\left(t_{k}\right)+\frac{\Delta t}{1!} \frac{d}{d t} x\left(t_{k}\right)+\frac{(\Delta t)^{2}}{2!} \frac{d^{2}}{d t^{2}} x\left(t_{k}\right)+\ldots
$$

- since $\frac{d}{d t} x\left(t_{k}\right)=f\left(t, x\left(t_{k}\right)\right)$, and $\frac{d^{2}}{d t^{2}} x\left(t_{k}\right)=\frac{\partial f}{\partial t}\left(t, x_{k}\right)+\frac{\partial f}{\partial x}\left(t, x_{k}\right) \frac{d}{d t} x\left(t, x_{k}\right)$
- numeric scheme

$$
x\left(t_{k+1}\right)=x\left(t_{k}\right)+(\Delta t) f\left(t, x\left(t_{k}\right)\right)+\frac{1}{2}(\Delta t)^{2}\left\{\frac{\partial f}{\partial t}\left(t, x_{k}\right)+\frac{\partial f}{\partial x}\left(t, x_{k}\right) f\left(t, x\left(t_{k}\right)\right)\right\}
$$

Second order for SIR model

Calculate the second order term of the scheme for each component of the SIR model and add it to the R code! Idem for the SIR model with quadratic force of infection function! Compare!

- Second order scheme: accurate, but f needs to be differentiable \Rightarrow integral equation:

$$
x\left(t_{k+1}\right)=x\left(t_{k}\right)+\int_{t_{k}}^{t_{k+1}} f(s) d s
$$

- Left endpoint rule: $\int_{t_{k}}^{t_{k+1}} f(s) d s \approx(\Delta t) f\left(t_{k}\right)$ with (forward Euler) scheme:

$$
x\left(t_{k+1}\right)=x\left(t_{k}\right)+(\Delta t) f\left(t_{k}, x^{k}\right)
$$

- Trapezoidal rule: $\int_{t_{k}}^{t_{k+1}} f(s) d s \approx(\Delta t) \frac{1}{2}\left(f\left(t_{k}, x\left(t_{k}\right)\right)+f\left(t_{k+1}, x\left(t_{k+1}\right)\right)\right)$ with implicit scheme

$$
x\left(t_{k+1}\right)=x\left(t_{k}\right)+(\Delta t) \frac{1}{2}\left(f\left(t_{k}, x^{k}\right)+f\left(t_{k+1}, x^{k+1}\right)\right)
$$

Group A work: Solve influenza SIR model numerically in R!

- Solve the SIR model numerically using the function ode in the package deSolve (e.g. find syntax on stackoverflow or ChatGPT)
- look up in the help menu ?ode different methods and their required parameters \mathbb{R} 02_deSolveSIR.R

Group B work: Do-it-yourself trapezoidal scheme!

- Solve the SIR model numerically by implementing the trapezoidal scheme in R! Don'use ChatGPT you can use ChatGPT, but explain the result. R 03_SIR_trapezoidal.R

Serial interval, generation time, incubation time

The figure below from Lehtinen et al. shows between infector i and infectee j :

- G, generation time: time between infection of i and j
- S, serial interval: time between symptom onset of i and j
- l, incubation time: time between infection of i and symptom onset of j

Generation time and serial interval
Which of the three quantities G, S, I can be negative? What is the epidemiological meaning in this case? Can you give an example?

Influenza outbreak in a boarding school: difference equation

- time increments $t_{i}=i \in \mathbb{N}$
- time increments $t_{i}=i \in \mathbb{N}$
- generation time distribution $g: \mathbb{N} \rightarrow[0,1]$, i.e. $g(k)$ is probability of a primary infection causing a secondary infection after k time steps
- time increments $t_{i}=i \in \mathbb{N}$
- generation time distribution $g: \mathbb{N} \rightarrow[0,1]$, i.e. $g(k)$ is probability of a primary infection causing a secondary infection after k time steps
- force of infection $\lambda(I)(i)=\beta \sum_{k} \frac{I(i-k)}{N(i-k)} g(k)$, non-Markovian
- time increments $t_{i}=i \in \mathbb{N}$
- generation time distribution $g: \mathbb{N} \rightarrow[0,1]$, i.e. $g(k)$ is probability of a primary infection causing a secondary infection after k time steps
- force of infection $\lambda(I)(i)=\beta \sum_{k} \frac{l(i-k)}{N(i-k)} g(k)$, non-Markovian
- Difference equation: β, γ are probabilities

$$
\begin{aligned}
S(i+1) & =S(i)-\lambda(I)(i) S(i) \\
I(i+1) & =I(i)+\lambda(I)(i) S(i)-\gamma I(i) \\
R(i+1) & =\gamma I(i)
\end{aligned}
$$

- time increments $t_{i}=i \in \mathbb{N}$
- generation time distribution $g: \mathbb{N} \rightarrow[0,1]$, i.e. $g(k)$ is probability of a primary infection causing a secondary infection after k time steps
- force of infection $\lambda(I)(i)=\beta \sum_{k} \frac{l(i-k)}{N(i-k)} g(k)$, non-Markovian
- Difference equation: β, γ are probabilities

$$
\begin{aligned}
& \qquad \begin{aligned}
S(i+1) & =S(i)-\lambda(I)(i) S(i) \\
I(i+1) & =I(i)+\lambda(I)(i) S(i)-\gamma I(i) \\
R(i+1) & =\gamma I(i)
\end{aligned} \\
& \text { Update for next time step depends not only on now, but also past events! }
\end{aligned}
$$

event: infectious individual arrives

event: movement

event: infectious individuals transmits, two infected
dormitory

Why stochastic dynamics?

Many phenomena in biology are intrinsically random and multi-scale!

individual to population

- stochastic algorithms need rules, not explicit functions, flexible!
- stochastic algorithms explore probabilistic questions: extinction, criticality
" mean-field approximation" of deterministic equations by stochastic algorithm

Law of Large Numbers (LLN)

Mean of iid samples converges to expected value!
X_{i} iid r.v., then

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(X_{1}+\ldots X_{n}\right)=\mathbb{E}\left(X_{1}\right)
$$

strong LLN: a.s. convergence
weak LLN: convergence in probability
" mean-field approximation" of deterministic equations by stochastic algorithm

Central Limit Theorem (CLT)

Rescaled mean of iid samples with equal variance has Gaussian law as limit distribution!
X_{i} iid r.v. with $\operatorname{var}\left(X_{i}\right)=\sigma^{2}$, and Y r.v. with law $\mathcal{N}\left(0, \sigma^{2}\right)$, then

$$
\lim _{n \rightarrow \infty} \sqrt{n} \frac{1}{n}\left(X_{1}+\ldots X_{n}\right)=Y
$$

CLT: convergence in probability

Probability theory primer

stochastic=random=aleatory=chance=?

Probability theory primer

stochastic $=$ random $=$ aleatory $=$ chance $=$?
axioms of probability: universe+events+probability

Probability theory primer

stochastic=random=aleatory=chance=?
axioms of probability: universe+events+probability
universe Ω : things, e.g. head, tail or infection, recovery

Probability theory primer

stochastic=random=aleatory=chance=?
axioms of probability: universe+events+probability
universe Ω : things, e.g. head, tail or infection, recovery
events \mathcal{F}, what can happen with things, e.g. head/tail in coin toss

Probability theory primer

stochastic=random=aleatory=chance=?
axioms of probability: universe+events+probability
universe Ω : things, e.g. head, tail or infection, recovery
events \mathcal{F}, what can happen with things, e.g. head/tail in coin toss probability $\mathbb{P}:(\Omega, \mathcal{F}) \rightarrow[0,1]$

Probability theory primer

stochastic=random=aleatory=chance=?
axioms of probability: universe+events+probability
universe Ω : things, e.g. head, tail or infection, recovery events \mathcal{F}, what can happen with things, e.g. head/tail in coin toss probability $\mathbb{P}:(\Omega, \mathcal{F}) \rightarrow[0,1]$

Axiom $1 \mathbb{P}(\Omega)=1$

Probability theory primer

stochastic=random=aleatory=chance=?
axioms of probability: universe+events+probability
universe Ω : things, e.g. head, tail or infection, recovery events \mathcal{F}, what can happen with things, e.g. head/tail in coin toss probability $\mathbb{P}:(\Omega, \mathcal{F}) \rightarrow[0,1]$

Axiom $1 \mathbb{P}(\Omega)=1$
Axiom 2 For any event $E: \mathbb{P}(E)=1-\mathbb{P}(\Omega \backslash E)$

Probability theory primer

stochastic=random=aleatory=chance=?
axioms of probability: universe+events+probability
universe Ω : things, e.g. head, tail or infection, recovery events \mathcal{F}, what can happen with things, e.g. head/tail in coin toss probability $\mathbb{P}:(\Omega, \mathcal{F}) \rightarrow[0,1]$

Axiom $1 \mathbb{P}(\Omega)=1$
Axiom 2 For any event $E: \mathbb{P}(E)=1-\mathbb{P}(\Omega \backslash E)$
Axiom 3 if E_{i} disjoint, then $\mathbb{P}\left(\bigcup_{i} E_{i}\right)=\sum_{i} \mathbb{P}\left(E_{i}\right)$
stochastic=random=aleatory=chance=?
axioms of probability: universe+events+probability
universe Ω : things, e.g. head, tail or infection, recovery events \mathcal{F}, what can happen with things, e.g. head/tail in coin toss probability $\mathbb{P}:(\Omega, \mathcal{F}) \rightarrow[0,1]$

Axiom $1 \mathbb{P}(\Omega)=1$
Axiom 2 For any event $E: \mathbb{P}(E)=1-\mathbb{P}(\Omega \backslash E)$
Axiom 3 if E_{i} disjoint, then $\mathbb{P}\left(\bigcup_{i} E_{i}\right)=\sum_{i} \mathbb{P}\left(E_{i}\right)$
random variable (r.v.) $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(A, \mathcal{A})$ measurable
stochastic=random=aleatory=chance=?
axioms of probability: universe+events+probability
universe Ω : things, e.g. head, tail or infection, recovery events \mathcal{F}, what can happen with things, e.g. head/tail in coin toss
probability $\mathbb{P}:(\Omega, \mathcal{F}) \rightarrow[0,1]$
Axiom $1 \mathbb{P}(\Omega)=1$
Axiom 2 For any event $E: \mathbb{P}(E)=1-\mathbb{P}(\Omega \backslash E)$
Axiom 3 if E_{i} disjoint, then $\mathbb{P}\left(\bigcup_{i} E_{i}\right)=\sum_{i} \mathbb{P}\left(E_{i}\right)$ random variable (r.v.) $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(A, \mathcal{A})$ measurable probability law of r.v. $f_{X}:(A, \mathcal{A}) \rightarrow[0,1]$ with

$$
f(A)=\mathbb{P}\left(X^{-1}(A)\right)=\mathbb{P}(E \in \mathcal{F}: X(E)=A) \text { for } A \in \mathcal{A}
$$

Probability theory primer

Coin toss

Write down a fair coin toss as a r.v. using the definitions from above!

Discrete \& continuous r.v.

discrete r.v. universe is countable or finite

Probability theory primer

Coin toss

Write down a fair coin toss as a r.v. using the definitions from above!

Discrete \& continuous r.v.

discrete r.v. universe is countable or finite

$$
\Omega=\{0,1\} \text { and } f_{X}(\{1\})=p \in[0,1] \text { "Bernoulli" }
$$

Probability theory primer

Coin toss

Write down a fair coin toss as a r.v. using the definitions from above!

Discrete \& continuous r.v.

discrete r.v. universe is countable or finite

$$
\begin{aligned}
& \Omega=\{0,1\} \text { and } f_{X}(\{1\})=p \in[0,1] \text { "Bernoulli" } \\
& \Omega=\{0,1, \ldots\} \text { and } f_{X}(\{k\})=e^{-\lambda} \frac{\lambda^{k}}{k!} \text { "Poisson" }
\end{aligned}
$$

Probability theory primer

Coin toss

Write down a fair coin toss as a r.v. using the definitions from above!

Discrete \& continuous r.v.

discrete r.v. universe is countable or finite

$$
\begin{aligned}
& \Omega=\{0,1\} \text { and } f_{X}(\{1\})=p \in[0,1] \text { "Bernoulli" } \\
& \Omega=\{0,1, \ldots\} \text { and } f_{X}(\{k\})=e^{-\lambda \frac{\lambda^{k}}{k!} \text { "Poisson" }}
\end{aligned}
$$

continuous r.v. universe is uncountable

Probability theory primer

Coin toss

Write down a fair coin toss as a r.v. using the definitions from above!

Discrete \& continuous r.v.

discrete r.v. universe is countable or finite

$$
\begin{aligned}
& \Omega=\{0,1\} \text { and } f_{X}(\{1\})=p \in[0,1] \text { "Bernoulli" } \\
& \Omega=\{0,1, \ldots\} \text { and } f_{X}(\{k\})=e^{-\lambda \frac{\lambda^{k}}{k!} \text { "Poisson" }}
\end{aligned}
$$

continuous r.v. universe is uncountable

$$
\Omega=\mathbb{R}_{+} \text {and } f_{X}([0, a))=\lambda \int_{0}^{a} e^{-\lambda y} d y, \text { but } f_{X}(\{b\})=0!
$$

"exponential distribution"

From random events to stochastic dynamics
observable $\varphi: A \rightarrow \mathbb{R}$, then $\varphi(X)$ observable

From random events to stochastic dynamics

observable $\varphi: A \rightarrow \mathbb{R}$, then $\varphi(X)$ observable
expectation $: \mathbb{E}(\varphi(X)):=\sum_{z} \varphi(y) f_{X}(y)$ resp. $\int_{A} \varphi(y) f_{X}(y) d y$

From random events to stochastic dynamics

observable $\varphi: A \rightarrow \mathbb{R}$, then $\varphi(X)$ observable
expectation $: \mathbb{E}(\varphi(X)):=\sum_{z} \varphi(y) f_{X}(y)$ resp. $\int_{A} \varphi(y) f_{X}(y) d y$
moments $f(x)=x^{n}$, then $\mathbb{E}\left(X^{n}\right)$ is nth-moment, moments fully determine probability law of r.v.!

From random events to stochastic dynamics

observable $\varphi: A \rightarrow \mathbb{R}$, then $\varphi(X)$ observable
expectation : $\mathbb{E}(\varphi(X)):=\sum_{z} \varphi(y) f_{X}(y)$ resp. $\int_{A} \varphi(y) f_{X}(y) d y$
moments $f(x)=x^{n}$, then $\mathbb{E}\left(X^{n}\right)$ is nth-moment, moments fully determine probability law of r.v.!
independence X, Y r.v. are independent $X \perp Y$, iff

$$
\mathbb{P}(\{X \in A\} \cap\{Y \in B\})=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)
$$

From random events to stochastic dynamics

observable $\varphi: A \rightarrow \mathbb{R}$, then $\varphi(X)$ observable
expectation : $\mathbb{E}(\varphi(X)):=\sum_{z} \varphi(y) f_{X}(y)$ resp. $\int_{A} \varphi(y) f_{X}(y) d y$
moments $f(x)=x^{n}$, then $\mathbb{E}\left(X^{n}\right)$ is nth-moment, moments fully determine probability law of r.v.!
independence X, Y r.v. are independent $X \perp Y$, iff
$\mathbb{P}(\{X \in A\} \cap\{Y \in B\})=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)$
iid X, Y iid if independent, identically distributed
observable $\varphi: A \rightarrow \mathbb{R}$, then $\varphi(X)$ observable
expectation : $\mathbb{E}(\varphi(X)):=\sum_{z} \varphi(y) f_{X}(y)$ resp. $\int_{A} \varphi(y) f_{X}(y) d y$
moments $f(x)=x^{n}$, then $\mathbb{E}\left(X^{n}\right)$ is nth-moment, moments fully determine probability law of r.v.!
independence X, Y r.v. are independent $X \perp Y$, iff

$$
\mathbb{P}(\{X \in A\} \cap\{Y \in B\})=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)
$$

iid X, Y iid if independent, identically distributed

Warm-up

Calculate the expectation of Bernoulli and exponential r.v.!

From random events to stochastic dynamics
stochastic process collection of r.v. indexed by time: $t \mapsto X(t)$

From random events to stochastic dynamics

stochastic process collection of r.v. indexed by time: $t \mapsto X(t)$
filtration \mathcal{F}_{t} collection of sets of events indexed by time, information about $X(t)$ that is available up to time t
convergence almost sure \rightarrow in probability \rightarrow in expectation

From random events to stochastic dynamics

stochastic process collection of r.v. indexed by time: $t \mapsto X(t)$
filtration \mathcal{F}_{t} collection of sets of events indexed by time, information about $X(t)$ that is available up to time t
convergence almost sure \rightarrow in probability \rightarrow in expectation
Markov property $\mathbb{P}\left(X_{t+a} \in A \mid \mathcal{F}_{t}\right)=\mathbb{P}\left(X_{t+a} \in A \mid \sigma\left(X_{t}\right)\right)$
"what happens in the future depends only on the present state"
Markov chain $\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}, \ldots, X_{1}=x_{1}\right)=\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right)$ "what happens in the future depends only on the present state"

The r.v. X in \mathbb{R}_{+}is without memory if:

$$
\mathbb{P}(X>t+s \mid X>s)=\mathbb{P}(X>t)
$$

The r.v. X in \mathbb{R}_{+}is without memory if:

$$
\mathbb{P}(X>t+s \mid X>s)=\mathbb{P}(X>t)
$$

with

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

The r.v. X in \mathbb{R}_{+}is without memory if:

$$
\mathbb{P}(X>t+s \mid X>s)=\mathbb{P}(X>t)
$$

with

$$
\begin{gathered}
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \\
\mathbb{P}(X>t+s)=\mathbb{P}(X>t) \mathbb{P}(X>s)
\end{gathered}
$$

The r.v. X in \mathbb{R}_{+}is without memory if:

$$
\mathbb{P}(X>t+s \mid X>s)=\mathbb{P}(X>t)
$$

with

$$
\begin{gathered}
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \\
\mathbb{P}(X>t+s)=\mathbb{P}(X>t) \mathbb{P}(X>s)
\end{gathered}
$$

\Longleftrightarrow functional equation:

$$
\mathbb{P}(X>a)=\mathbb{P}(X>1)^{a}=e^{\log (\mathbb{P}(X>1)) a}=e^{-\lambda a}
$$

The r.v. X in \mathbb{R}_{+}is without memory if:

$$
\mathbb{P}(X>t+s \mid X>s)=\mathbb{P}(X>t)
$$

with

$$
\begin{gathered}
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \\
\mathbb{P}(X>t+s)=\mathbb{P}(X>t) \mathbb{P}(X>s)
\end{gathered}
$$

\Longleftrightarrow functional equation:

$$
\mathbb{P}(X>a)=\mathbb{P}(X>1)^{a}=e^{\log (\mathbb{P}(X>1)) a}=e^{-\lambda a}
$$

Memory-less r.v.
X r.v. without memory $\Longleftrightarrow X$ exponentially distr. with $\lambda=-\log (\mathbb{P}(X>1))$

A MILLION Random Digits

100,000 Normal Deviates
buy the book... RAND

Random number generation: the physical way

...or move your mouse: hardware random number generator

```
回 bestuser@workstation:-
Flle Edit View Search Terminal Help
            "Best User (Best Company) <bestuser@example.com>"
Change (N)ame, (C) omment, (E)mail or (0)kay/(Q)uit? 0
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
gpg: /home/bestuser/.gnupg/trustdb.gpg: trustdb created
gpg: key 94F45C144CD3559D marked as ultimately trusted
gpg: directory '/home/bestuser/.gnupg/openpgp-revocs.d' created
gpg: revocation certificate stored as '/home/bestuser/.gnupg/openpgp-revocs.d/CC
1795E6F83B091A7B813A6D94F45C144CD3559D. rev'
public and secret key created and signed.
pub rsa2048 2020-04-23 [SC] [expires: 2021-04-23]
    CC1795E6F83B091A7B813A6D94F45C144CD3559D
                            Best User (Best Company) <bestuser@example.com>
sub rsa2048 2020-04-23 [E] [expires: 2021-04-23]
[bestuser@workstation ~]$
```


Random number generation: the algorithmic way

- pseudo-random number generator: linear congruence, Mersenne Twister

Random number generation: the algorithmic way

- pseudo-random number generator: linear congruence, Mersenne Twister
- quasi-random number generator: low-discrepancy sequence

Random number generation: the algorithmic way

- pseudo-random number generator: linear congruence, Mersenne Twister
- quasi-random number generator: low-discrepancy sequence
- statistical tests of randomness

Random number generation: the algorithmic way

- pseudo-random number generator: linear congruence, Mersenne Twister
- quasi-random number generator: low-discrepancy sequence
- statistical tests of randomness
- seed of random number generation, index used to "replicate" simulation

Random number generation: the algorithmic way

- pseudo-random number generator: linear congruence, Mersenne Twister
- quasi-random number generator: low-discrepancy sequence
- statistical tests of randomness
- seed of random number generation, index used to "replicate" simulation
- cumulative distribution function (cdf) $F_{X}(t)=\mathbb{P}(X \leq t)$, inverse cdf (icdf) F_{X}^{-1}

Random number generation: the algorithmic way

- pseudo-random number generator: linear congruence, Mersenne Twister
- quasi-random number generator: low-discrepancy sequence
- statistical tests of randomness
- seed of random number generation, index used to "replicate" simulation
- cumulative distribution function (cdf) $F_{X}(t)=\mathbb{P}(X \leq t)$, inverse cdf (icdf) F_{X}^{-1}

inverse transform sampling

X real-valued r.v. and U uniformly distributed r.v. on $[0,1]$, then r.v. $F_{X}^{-1}(U) \sim X$

Generating random samples

Sample from exponential distribution

random draws for r.v. $X \sim \operatorname{Exp}(\lambda)$ by using uniformly distributed random numbers in the interval $[0,1]$ cdf $F_{X}(t)=1-e^{-\lambda t} \Rightarrow$ icdf $F_{X}^{-1}(t)=-\log (-(t-1)) / \lambda=\frac{\log (1-t)}{-\lambda} \mathbb{R}$ 04_inversesampling.R

Sample from standard normal distribution

random draws for r.v. $X \sim \mathcal{N}(0,1)$ by using uniformly distributed random numbers in the interval $[0,1]$

Generating random samples

Sample from discrete set

X is r.v. with values in discrete set $K=\left\{k_{1}, k_{2}, \ldots\right\}$ with $\mathbb{P}\left(X=k_{i}\right)=p_{i}$ such that $\sum_{i} p_{i}=1$.

Define $g:[0,1] \rightarrow K$ with
$g(x)=k_{j} \Leftrightarrow \sum_{i=1}^{j-1} p_{i}<x \leq \sum_{i=1}^{j} p_{i}$
If $U \sim$ uniform, then $X \sim g(U)$:
$\mathbb{P}\left(g(U)=k_{j}\right)=\mathbb{P}\left(\sum_{i=1}^{j-1} p_{i}<U \leq \sum_{i=1}^{j} p_{i}\right)=p_{j}$

How to measure computational complexity

- Landau notation: $f(n)=\mathcal{O}(g(n))$ for $n \rightarrow \infty$ if there are $M, n_{0}>0$ such that for all $n \geq n_{0}$:

$$
|f(n)| \leq M g(n)
$$

- Landau notation: $f(n)=\mathcal{O}(g(n))$ for $n \rightarrow \infty$ if there are $M, n_{0}>0$ such that for all $n \geq n_{0}$:

$$
|f(n)| \leq M g(n)
$$

- e.g. $f(n)=5 n^{3}+n+5 \Rightarrow f(n)=\mathcal{O}\left(n^{3}\right)$

How to measure computational complexity

- Landau notation: $f(n)=\mathcal{O}(g(n))$ for $n \rightarrow \infty$ if there are $M, n_{0}>0$ such that for all $n \geq n_{0}$:

$$
|f(n)| \leq M g(n)
$$

- e.g. $f(n)=5 n^{3}+n+5 \Rightarrow f(n)=\mathcal{O}\left(n^{3}\right)$
- runtime of algorithm: input size n, algorithm needs $\mathcal{O}(g(n))$ computation time for solution

How to measure computational complexity

- Landau notation: $f(n)=\mathcal{O}(g(n))$ for $n \rightarrow \infty$ if there are $M, n_{0}>0$ such that for all $n \geq n_{0}$:

$$
|f(n)| \leq M g(n)
$$

- e.g. $f(n)=5 n^{3}+n+5 \Rightarrow f(n)=\mathcal{O}\left(n^{3}\right)$
- runtime of algorithm: input size n, algorithm needs $\mathcal{O}(g(n))$ computation time for solution
- e.g. binary search in list of size n has logarithmic run time, i.e. algorithm needs $\mathcal{O}(\log n)$ computation steps for solution

Benchmarking and profiling computer programs

Benchmarking: compare the computing time of programs with same input/output

Benchmarking and profiling computer programs

Benchmarking: compare the computing time of programs with same input/output

Recursive vs dynamic programming

The Fibonacci numbers are defined by the recursion:

$$
F_{1}=1, F_{2}=1, F_{n}=F_{n-1}+F_{n-2}
$$

for $n>2$. Calculate F_{n} by both recursive and dynamic programming (i.e. using already stored numbers). Use the R package microbenchmark to benchmark both functions and system.time to calculate the runtime as a function of n. What do you observe? R 05_benchmarking.R

Benchmarking and profiling computer programs

Profiling: diagnosing required memory, frequency and duration of functional calls for each line of your computer code

Benchmarking and profiling computer programs

Profiling: diagnosing required memory, frequency and duration of functional calls for each line of your computer code

Profiling

Use the R function Rprof to profile both implementations of the Fibonacci number calculations. What do you observe? R 06_profiling.R

Benchmarking and profiling computer programs

Profiling: diagnosing required memory, frequency and duration of functional calls for each line of your computer code

Profiling

Use the R function Rprof to profile both implementations of the Fibonacci number calculations. What do you observe? R 06_profiling.R

Cyclomatic complexity: number of linearly independent paths through code

Profiling: diagnosing required memory, frequency and duration of functional calls for each line of your computer code

Profiling

Use the R function Rprof to profile both implementations of the Fibonacci number calculations. What do you observe? R 06_profiling.R

Cyclomatic complexity: number of linearly independent paths through code

Cyclomatic complexity

Use the R package cyclocomp to profile both implementations of the Fibonacci number calculations. What do you observe? What are your conclusion? R 07_cyclocomp.R

Biochemical reaction networks

- species \mathcal{S} : chemical compounds whose dynamics we model
- reactions \mathcal{R} : how to convert one complex into another

Example

$$
\mathcal{S}=\{A, B, C\}, \mathcal{C}=\{A+B, 2 B, C, \emptyset\}, \mathcal{R}=\{A+B \rightarrow 2 B, B \rightarrow C, C \rightarrow \emptyset\}
$$

Biochemical reaction networks

- species \mathcal{S} : chemical compounds whose dynamics we model
- complexes \mathcal{C} : nonnegative linear combinations of species (i.e. interactions)
- reactions \mathcal{R} : how to convert one complex into another

Example

$$
\mathcal{S}=\{A, B, C\}, \mathcal{C}=\{A+B, 2 B, C, \emptyset\}, \mathcal{R}=\{A+B \rightarrow 2 B, B \rightarrow C, C \rightarrow \emptyset\}
$$

Biochemical reaction networks

- species \mathcal{S} : chemical compounds whose dynamics we model
- complexes \mathcal{C} : nonnegative linear combinations of species (i.e. interactions)
- reactions \mathcal{R} : how to convert one complex into another

Example

$$
\mathcal{S}=\{A, B, C\}, \mathcal{C}=\{A+B, 2 B, C, \emptyset\}, \mathcal{R}=\{A+B \rightarrow 2 B, B \rightarrow C, C \rightarrow \emptyset\}
$$

- $A+B \rightarrow 2 B$: A active, B inactive form of protein, B catalyzes A

Biochemical reaction networks

- species \mathcal{S} : chemical compounds whose dynamics we model
- complexes \mathcal{C} : nonnegative linear combinations of species (i.e. interactions)
- reactions \mathcal{R} : how to convert one complex into another

Example

$$
\mathcal{S}=\{A, B, C\}, \mathcal{C}=\{A+B, 2 B, C, \emptyset\}, \mathcal{R}=\{A+B \rightarrow 2 B, B \rightarrow C, C \rightarrow \emptyset\}
$$

- $A+B \rightarrow 2 B$: A active, B inactive form of protein, B catalyzes A
- $B \rightarrow C: B$ undergoes conformational change to become C

Biochemical reaction networks

- species \mathcal{S} : chemical compounds whose dynamics we model
- complexes \mathcal{C} : nonnegative linear combinations of species (i.e. interactions)
- reactions \mathcal{R} : how to convert one complex into another

Example

$$
\mathcal{S}=\{A, B, C\}, \mathcal{C}=\{A+B, 2 B, C, \emptyset\}, \mathcal{R}=\{A+B \rightarrow 2 B, B \rightarrow C, C \rightarrow \emptyset\}
$$

- $A+B \rightarrow 2 B$: A active, B inactive form of protein, B catalyzes A
- $B \rightarrow C: B$ undergoes conformational change to become C
- $C \rightarrow \emptyset: C$ is degraded
- $\mathcal{R}=\left\{y_{k} \rightarrow y_{k}^{\prime} ; y_{k}, y_{k}^{\prime} \in \mathcal{C}\right\}$ with $y_{k} \equiv \sum_{i} y_{k, i} S_{i}$
- stoichiometric vectors of network: $\zeta_{k}:=y_{k}^{\prime}-y_{k} \in \mathbb{Z}^{n}$

Example

$$
\mathcal{S}=\{A, B, C\}, \mathcal{C}=\{A+B, 2 B, C, \emptyset\}, \mathcal{R}=\{A+B \rightarrow 2 B, B \rightarrow C, C \rightarrow \emptyset\}
$$

$$
\begin{aligned}
& \zeta_{1}=[0,2,0]-[1,1,0]=[-1,1,0] \\
& \zeta_{2}=[0,0,1]-[0,1,0]=[0,-1,1] \\
& \zeta_{3}=[0,0,0]-[0,0,1]=[0,0,-1]
\end{aligned}
$$

Counting processes via Poisson

$$
t \mapsto N(t) \in \mathbb{N} \text { such that } N(0)=0, N \text { constant except jumps of size }+1 .
$$

Poisson (point) process

Counting process such that

- $N(0)=0$
- independent increments, i.e. $N\left(t_{k+1}\right)-N\left(t_{k}\right)$ are independent r.v. for $0<t_{1}<\cdots<t_{k+1}$
- distribution of $N(t+\Delta)-N(t)$ does not depend on t it follows: $\mathbb{P}(N(t)=k)=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$ "number of arrivals until time $t^{\prime \prime}$
- jump time $S_{k}=\min \{t: N(t) \geq k\}$, then $S_{k}-S_{k-1} \sim \operatorname{Exp}(\lambda)$

Poisson process

Counting processes and biochemical reactions

- $R_{k}(t)$ counting process for occurrences of reaction k by time t

Counting processes and biochemical reactions

- $R_{k}(t)$ counting process for occurrences of reaction k by time t
- dynamical system of molecules

$$
X(t)=X(0)+\sum_{k} R_{k}(t) \zeta_{k}
$$

Counting processes and biochemical reactions

- $R_{k}(t)$ counting process for occurrences of reaction k by time t
- dynamical system of molecules

$$
X(t)=X(0)+\sum_{k} R_{k}(t) \zeta_{k}
$$

Reaction dynamics as Markov jump processes

Let $\lambda_{k}: \mathbb{N}^{\mathcal{S}} \rightarrow \mathbb{R}_{+}$be intensity function of reaction k for given molecular state. The counting processes R_{k} can we represented by iid Poisson processes Y_{k} with intensity 1 such that for intensity function $\lambda_{k}: \mathbb{N}^{\mathcal{S}} \rightarrow \mathbb{R}_{+}$:

$$
R^{k}(t)=Y_{k}\left(\int_{0}^{t} \lambda_{k}(X(s)) d s\right)
$$

Anderson\& Kurtz, chapter 1, pp5

Mass-action kinetics

Mass-action kinetics, seen by the chemist
At constant temperature, the rate of chemical reaction is directly proportional to the product of molar concentrations of reacting species.

Mass-action kinetics, seen by the chemist
At constant temperature, the rate of chemical reaction is directly proportional to the product of molar concentrations of reacting species.

Mass-action kinetics, seen by the mathematician

$$
\lambda_{k}(x)=\kappa_{k} \prod_{i} \frac{x_{i}!}{\left(x_{i}-y_{k i}\right)!}
$$

$x_{i}=\#$ species $i, y_{k i}=\#$ species i needed for reaction k, "falling factorial"

Mass-action kinetics, seen by the mathematician

$$
\lambda_{k}(x)=\kappa_{k} \prod_{i} \frac{x_{i}!}{\left(x_{i}-y_{k i}\right)!}
$$

$x_{i}=\#$ species $i, y_{k i}=\#$ species i needed for reaction k, "falling factorial"

$$
\lambda_{k}(x)=\kappa_{k} \prod_{i} \frac{x_{i}!}{\left(x_{i}-y_{k i}\right)!}
$$

$x_{i}=\#$ species $i, y_{k i}=\#$ species i needed for reaction k, "falling factorial"

Mass-action kinetics, seen by the mathematician
λ_{k} is proportional to the number of distinct subsets of the molecules present that can form the inputs for the reaction. E.g. for reaction $A+B \rightarrow 2 B, \lambda_{1}(x)=\kappa_{1} x_{1} x_{2}$.

Beyond mass-action kinetics

Beyond mass-action kinetics

Think of physical or chemical reasons that could prevent the validity of the principle of mass-action!

Beyond mass-action kinetics

Think of physical or chemical reasons that could prevent the validity of the principle of mass-action!

Beyond mass-action kinetics

Explain the concept of cooperative binding and how it would change the assumptions on biochemical reaction dynamics!

Beyond mass-action kinetics

Think of physical or chemical reasons that could prevent the validity of the principle of mass-action!

Beyond mass-action kinetics

Explain the concept of cooperative binding and how it would change the assumptions on biochemical reaction dynamics!

Beyond mass-action kinetics

Can you give an example for non-mass-action kinetics in epidemic processes?

Epidemics as biochemical reaction systems

stoichiometrically admissible: $\lambda_{k}(x)=0$ if $x_{i}<y_{k, i}$ for all i (e.g. for $A+B \rightarrow 2 B$ we need at least one A and one B for the reaction to happen)

Epidemics as biochemical reaction systems

stoichiometrically admissible: $\lambda_{k}(x)=0$ if $x_{i}<y_{k, i}$ for all i (e.g. for $A+B \rightarrow 2 B$ we need at least one A and one B for the reaction to happen)

Reaction	Intensity function	Rate	molecular
$A+B \rightarrow 2 B$	$\lambda_{1}(x)=\kappa_{1} x_{1} x_{2}$	κ_{1}	catalysis of protein inactivation
$B \rightarrow C$	$\lambda_{2}(x)=\kappa_{2} x_{2}$	κ_{2}	conformational change
$C \rightarrow \emptyset$	$\lambda_{3}(x)=\kappa_{3} x_{3}$	κ_{3}	degradation

Epidemics as biochemical reaction systems

stoichiometrically admissible: $\lambda_{k}(x)=0$ if $x_{i}<y_{k, i}$ for all i (e.g. for $A+B \rightarrow 2 B$ we need at least one A and one B for the reaction to happen)

Reaction
Intensity function
$A+B \rightarrow 2 B$
Rate

Epidemics as biochemical reaction systems via Poisson processes

Reaction	Intensity function	Rate	Stoichiometry ζ	epi
$S+I \rightarrow 2 I$	$\lambda_{1}(S, I, R)=\beta S I$	β	$[-1,1,0]$	new infections
$I \rightarrow R$	$\lambda_{2}(S, I, R)=\gamma I$	γ	$[0,-1,1]$	recovery

Epidemics as biochemical reaction systems via Poisson processes

Reaction	Intensity function	Rate	Stoichiometry ζ	epi
$S+I \rightarrow 2 I$	$\lambda_{1}(S, I, R)=\beta S I$	β	$[-1,1,0]$	new infections
$I \rightarrow R$	$\lambda_{2}(S, I, R)=\gamma I$	γ	$[0,-1,1]$	recovery

- time evolution of molecules per species is given by solution of the equation

$$
X(t)=X(0)+Y^{1}\left(\int_{0}^{t} \lambda_{1}\left(X_{s}\right) d s\right) \zeta_{1}+Y^{2}\left(\int_{0}^{t} \lambda_{2}\left(Y_{s}\right) d s\right) \zeta_{2}
$$

Reaction	Intensity function	Rate	Stoichiometry ζ	epi
$S+I \rightarrow 2 I$	$\lambda_{1}(S, I, R)=\beta S I$	β	$[-1,1,0]$	new infections
$I \rightarrow R$	$\lambda_{2}(S, I, R)=\gamma I$	γ	$[0,-1,1]$	recovery

- time evolution of molecules per species is given by solution of the equation

$$
\begin{gathered}
X(t)=X(0)+Y^{1}\left(\int_{0}^{t} \lambda_{1}\left(X_{s}\right) d s\right) \zeta_{1}+Y^{2}\left(\int_{0}^{t} \lambda_{2}\left(Y_{s}\right) d s\right) \zeta_{2} \\
{\left[\begin{array}{l}
S(t) \\
l(t) \\
R(t)
\end{array}\right]=\left[\begin{array}{l}
S(0) \\
I(0) \\
R(0)
\end{array}\right]+Y^{1}\left(\int_{0}^{t} \beta S(s) l(s) d s\right)\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+Y^{2}\left(\int_{0}^{t} \gamma l(s) d s\right)\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]}
\end{gathered}
$$

Group work: simulate variations of the SIR models

For each of the examples draw the flow diagram for the disease dynamics, write the biochemical reaction network and stochiometric vectors!

Incubation period

From exposure to infectiousness, 5 days pass on average. Add a compartement for exposed but not yet infectious hosts!

Ebola-like dynamics

In addition to the basic model used for influenza, we consider also a fraction p of individuals to die from the disease. Contact of susceptibles with dead bodies before burial will lead to additional infections.

Group work: simulate variations of the SIR models

For each of the examples draw the flow diagram for the disease dynamics, write the biochemical reaction network and stochiometric vectors!

Two rooms in the dorm

In the boarding school there is a respiratory disease outbreak among the students. All of them live together in the same building, but there are two dormitories A and B. Students living in B prefer to visit those living in A, but not so much the other way around. We have seen the following contact rates:

$$
A \xrightarrow{0.1} B \quad B \xrightarrow{0.5} A \quad A \xrightarrow{1} A \quad B \xrightarrow{1} B
$$

Group work: solutions

The species are $\left\{S_{A}, I_{A}, R_{A}, S_{B}, I_{B}, R_{B}\right\}$, the complexes are $\left\{S_{A}+I_{A}, 2 I_{A}, R_{A}, S_{B}+\right.$ $\left.I_{B}, 2 I_{B}, R_{B}, S_{A}+I_{B}, I_{A}+I_{B}, S_{B}+I_{A}\right\}$, the reactions are $R_{1}: S_{A}+I_{A} \rightarrow 2 I_{A}$, $R_{2}: I_{A} \rightarrow R_{A}, R_{3}: S_{B}+I_{B} \rightarrow 2 I_{B}$, $R_{4}: I_{B} \rightarrow R_{B}, R_{5}: S_{A}+I_{B} \rightarrow I_{A}+I_{B}$, $R_{6}: S_{B}+I_{A} \rightarrow I_{A}+I_{B}$ and the stoichiometric matrix is

$$
\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & -1 & 0 \\
-1 & -1 & 0 & 0 & +1 & 0 \\
0 & +1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 \\
0 & 0 & +1 & -1 & 0 & +1 \\
0 & 0 & 0 & +1 & 0 & 0
\end{array}\right]
$$

From Markov jump processes to differential equations

- replace molecule numbers $X(t)$ by concentration $C(t)=\frac{1}{N} X(t)$

From Markov jump processes to differential equations

- replace molecule numbers $X(t)$ by concentration $C(t)=\frac{1}{N} X(t)$
- N total number of molecules at given volume (e.g. Avogadro's number \times volume v, or total population)

From Markov jump processes to differential equations

- replace molecule numbers $X(t)$ by concentration $C(t)=\frac{1}{N} X(t)$
- N total number of molecules at given volume (e.g. Avogadro's number \times volume v, or total population)
- reaction rate inversely proportional to volume

From Markov jump processes to differential equations

- replace molecule numbers $X(t)$ by concentration $C(t)=\frac{1}{N} X(t)$
- N total number of molecules at given volume (e.g. Avogadro's number \times volume v, or total population)
- reaction rate inversely proportional to volume

Concentration dynamics

$$
C^{N}(t)=C^{N}(0)+\sum_{k=1} N^{-1} Y_{k}\left(N \int_{0}^{t} \lambda_{k}\left(C^{N}(s)\right) d s\right) \zeta_{k}
$$

From Markov jump processes to differential equations

- replace molecule numbers $X(t)$ by concentration $C(t)=\frac{1}{N_{v}} X(t)$

From Markov jump processes to differential equations

- replace molecule numbers $X(t)$ by concentration $C(t)=\frac{1}{N_{v}} X(t)$
- N_{v} total number of molecules at given volume (e.g. Avogadro's number \times volume v, or total population)

From Markov jump processes to differential equations

- replace molecule numbers $X(t)$ by concentration $C(t)=\frac{1}{N_{v}} X(t)$
- N_{v} total number of molecules at given volume (e.g. Avogadro's number \times volume v, or total population)
- reaction rates vary inversely with volume

From Markov jump processes to differential equations

- replace molecule numbers $X(t)$ by concentration $C(t)=\frac{1}{N_{v}} X(t)$
- N_{v} total number of molecules at given volume (e.g. Avogadro's number \times volume v, or total population)
- reaction rates vary inversely with volume

Concentration dynamics

$$
C^{N_{v}}(t):=C^{N_{v}}(0)+\sum_{i=1}^{m} N_{v}^{-1} Y_{k}\left(N_{v} \int_{0}^{t} \lambda_{k}\left(C^{N_{v}}(s)\right) d s\right) \zeta_{k}
$$

From Markov jump processes to differential equations

- what happens if $N \rightarrow \infty$?

From Markov jump processes to differential equations

 AfricaAIMS

- what happens if $N \rightarrow \infty$?
- $F(x):=\sum_{k} \lambda_{k}(x) \zeta_{k}$ globally Lipschitz

From Markov jump processes to differential equations

- what happens if $N \rightarrow \infty$?
- $F(x):=\sum_{k} \lambda_{k}(x) \zeta_{k}$ globally Lipschitz
- deterministic integral equation

$$
\begin{equation*}
x(t)=x(0)+\int_{0}^{t} F(x(s)) d s \tag{8}
\end{equation*}
$$

From Markov jump processes to differential equations

- what happens if $N \rightarrow \infty$?
- $F(x):=\sum_{k} \lambda_{k}(x) \zeta_{k}$ globally Lipschitz
- deterministic integral equation

$$
\begin{equation*}
x(t)=x(0)+\int_{0}^{t} F(x(s)) d s \tag{8}
\end{equation*}
$$

Convergence theorem

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\sup _{s \leq t}\left|C^{N}(s)-x(s)\right| \geq \epsilon\right)=0
$$

for each $\epsilon, t>0$, weak law of large numbers

From Markov jump processes to differential equations

- what happens if $N \rightarrow \infty$?
- $F(x):=\sum_{k} \lambda_{k}(x) \zeta_{k}$ globally Lipschitz
- deterministic integral equation

$$
\begin{equation*}
x(t)=x(0)+\int_{0}^{t} F(x(s)) d s \tag{8}
\end{equation*}
$$

Convergence theorem

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\sup _{s \leq t}\left|C^{N}(s)-x(s)\right| \geq \epsilon\right)=0
$$

for each $\epsilon, t>0$, weak law of large numbers

- Proof built on Gronwall \& Doob inequalities and martingale theory:

Anderson \& Kurtz, page 44f

Biochemical reaction systems: summary

- species of molecules can form complexes, and changes between complexes define reactions

Biochemical reaction systems: summary

- species of molecules can form complexes, and changes between complexes define reactions
- reactions can be described by stoichiometric vectors
- under the mass action assumption, the rate of reaction is proportional to the number of molecules involved

Biochemical reaction systems: summary

- species of molecules can form complexes, and changes between complexes define reactions
- reactions can be described by stoichiometric vectors
- under the mass action assumption, the rate of reaction is proportional to the number of molecules involved
- the evolution of molecules over time can be described mathematically as a Poisson process

Biochemical reaction systems: summary

- species of molecules can form complexes, and changes between complexes define reactions
- reactions can be described by stoichiometric vectors
- under the mass action assumption, the rate of reaction is proportional to the number of molecules involved
- the evolution of molecules over time can be described mathematically as a Poisson process
- molecular concentrations converge towards deterministic limit as number of molecules goes to infinity

Back to epidemic processes

For the simple SIR model, show that assumptions of the convergence theorem are satisfied.

Write explicitly the integral equation (8) and show how it relates to the ODE system.

Gillespie's algorithm: direct method

Simulate systems of biochemical reactions (e.g. susceptible meets infectious), assuming no more than two individuals at a time are involved in the reaction or events:
(1) reminder:

$$
X(t)=X(0)+Y^{1}\left(\int_{0}^{t} \lambda_{1}\left(X_{s}\right) d s\right) \zeta_{1}+Y^{2}\left(\int_{0}^{t} \lambda_{2}\left(Y_{s}\right) d s\right) \zeta_{2}
$$

(2) suppose transition times between states t_{i}, define $X(t)=X\left(t_{k}\right)$ for $t \in\left[t_{k}, t_{k+1}\right)$
(0) initial condition $X(0)=x_{0}$

1 for $t=t_{k}$ calculate $\lambda_{k}\left(X_{t}\right)$ for all k
2τ time to next event follows $\operatorname{Exp}\left(\sum_{k} \lambda_{k}\left(X_{t}\right)\right)$
3 next event K sampled with $\frac{\lambda_{k}\left(X_{t}\right)}{\sum_{k} \lambda_{k}\left(X_{t}\right)}$
4 update time: $t_{k+1}=t_{k}+\tau$
5 update state: $X\left(t_{k+1}\right)=X_{t_{k}}+\zeta_{K}$

Gillespie's algorithm: direct method for SIR

Initial trajectory $\mathcal{T}=(t, S, I, R)=(0,762,1,0)$
while $I>0$ do
Current state \mathcal{S} last row of $\mathcal{T}, S=\mathcal{S}[2], I=\mathcal{S}[3], R=\mathcal{S}[4]$
possible events vector: $\mathcal{E}=(\underbrace{\text { new infection, } \ldots, \text { new infection }}_{\text {Stimes }}, \underbrace{\text { clearance }, \ldots, \text { clearance }}_{\mathrm{I} \text { times }})$
rates vector: $\lambda=(\underbrace{\beta I / N, \ldots, \beta I / N}_{\mathrm{S} \text { times }}, \underbrace{\gamma, \ldots, \gamma}_{\text {I times }})$
time to next event: draw sample τ from $\operatorname{Exp}\left(\sum_{i} \lambda_{i}\right)$ choose next event: sample from \mathcal{E} with probability $\frac{\lambda_{i}}{\sum_{i} \lambda_{i}}$ if next event is "new infection" then $\mathcal{S} \leftarrow \mathcal{S}+(\tau,-1,1,0)$ else if next event is "clearance" then $\mathcal{S} \leftarrow \mathcal{S}+(\tau, 0,-1,1)$ end if $\mathcal{T} \leftarrow[\mathcal{T}, \mathcal{S}]$
end while
return \mathcal{T}

Gillespie's direct method for influenza SIR model

- write the Gillespie direct method in R for an SIR model
- use the optimal parameters obtained for the ODE system: $\beta=1.6692258, \gamma=0.4434502$
- perform 100 realizations of the stochastic process and compare to the ODE solution
- does the law of large numbers hold?
- R 08_GillespieDirect.R

Gillespie's direct method for influenza SIR model

What happens if you choose $\beta=0.7$?

Gillespie's algorithm: first reaction method for SIR

```
    Initial trajectory \(\mathcal{T}=(t, S, I, R)=(0,762,1,0)\)
    while \(I>0\) do
        Current state \(\mathcal{S}\) last row of \(\mathcal{T}, S=\mathcal{S}\) [2], \(I=\mathcal{S}[3], R=\mathcal{S}[4]\)
        possible events vector: \(\mathcal{E}=(\underbrace{\text { new infection, } \ldots, \text { new infection }}_{S \text { times }}, \underbrace{\text { clearance, } \ldots, \text { clearance }}_{\mathrm{I} \text { times }})\)
    rates vector: \(\lambda=(\underbrace{\beta I / N, \ldots, \beta I / N}_{\mathrm{S} \text { times }}, \underbrace{\gamma, \ldots, \gamma}_{\mathrm{I} \text { times }})\)
    time to event \(i\) : draw sample \(\tau_{i}\) from \(\operatorname{Exp}\left(\lambda_{i}\right)\)
    choose next event \(E_{\mu} \in \mathcal{E}\) : for \(\mu=\arg \min _{i} \tau_{i}\)
    if next event is "new infection" then
        \(\mathcal{S} \leftarrow \mathcal{S}+\left(\tau_{\mu},-1,1,0\right)\)
        else if next event is "clearance" then
        \(\mathcal{S} \leftarrow \mathcal{S}+\left(\tau_{\mu}, 0,-1,1\right)\)
    end if
    \(\mathcal{T} \leftarrow[\mathcal{T}, \mathcal{S}]\)
    end while
    return \(\mathcal{T}\)
```


Gillespie's algorithm: tau-leap

- direct method: sample time to next reaction, only one reaction per time step
- tau-leap: fix time to next reaction $\tau>0$, sample several reactions
- tau-leap assumption: rates of reactions do not change within $[t, t+\tau)$
- tau-leap: $X(t+\tau)=X(t)+\sum_{j} P_{j}\left(\lambda_{j} \tau\right)$
- tau-leap: $P_{j}(x)$ are independent Poisson random variables with intensity x

1 for each event j, sample $K_{j} \sim$ Poisson $\left(\lambda_{j} \tau\right)$ "number of times of event"
2 update: $S[t+\tau]=S[t]+\sum_{j} K_{j} v_{i j}$ for $v_{i j}$ stoichiometric vector, state i, event j

- really fast, τ can be optimized, check assumptions!
- R 09_GillespieTau.R

Simulate SIR variations with Gillespie

For the three models from the group work (incubation period, Ebola-like and two rooms in dormitory) use the R package GillespieSSA to simulate trajectories! Play around with parameters!

Gibson-Bruck method: speed up Gillespie with data structures

- Problem: model with structure for age, location, immunity, network, etc. has many different species and possible reactions \Rightarrow Gillespie slow: two random number draw per iteration, event/rate updates
- Solution: Gibson-Bruck algorithm with data structure
- dependency graph between events \Rightarrow event/rate update
- indexed priority queue of event times \Rightarrow single random number draw needed

Gibson-Bruck method: dependency graph

node	reaction	propensity	affects	depends	event
1	$S+I \rightarrow I+I$	$\beta \mathbf{S}(t) \mathbf{I}(t)^{a}$	I, S	I, S	new infection
2	$I \rightarrow R$	$\gamma \mathbf{}(t)$	I, R	I	clearance
3	$I \rightarrow \emptyset$	$\nu \mathbf{l}(t)$	I	I	virulence
4	$\emptyset \rightarrow S$	π	S	\emptyset	birth
5	$R \rightarrow S$	$\rho \mathbf{R}(t)$	R, S	R	immunity loss

${ }^{a} \mathbf{I}(t)$ denotes sum of all I at time t etc.

Gibson-Bruck method: dependency graph

node	reaction	propensity	affects	depends	event
1	$S+I \rightarrow I+I$	$\beta \mathbf{S}(t) \mathbf{I}(t)^{a}$	I, S	I, S	new infection
2	$I \rightarrow R$	$\gamma \mathbf{l}(t)$	I, R	I	clearance
3	$I \rightarrow \emptyset$	$\nu \mathbf{l}(t)$	I	I	virulence
4	$\emptyset \rightarrow S$	π	S	\emptyset	birth
5	$R \rightarrow S$	$\rho \mathbf{R}(t)$	R, S	R	immunity loss

${ }^{a} \mathbf{I}(t)$ denotes sum of all I at time t etc.

dependency graph: draw edge $E_{i j}$ iff $\operatorname{affects}(i) \cap \operatorname{depends}(j) \neq \emptyset$

Gibson-Bruck method: dependency graph

node	reaction	propensity	affects	depends	event
1	$S+I \rightarrow I+I$	$\beta \mathbf{S}(t) \mathbf{l}(t)^{a}$	I, S	I, S	new infection
2	$I \rightarrow R$	$\gamma \mathbf{l}(t)$	I, R	I	clearance
3	$I \rightarrow \emptyset$	$\nu \mathbf{l}(t)$	I	I	virulence
4	$\emptyset \rightarrow S$	π	S	\emptyset	birth
5	$R \rightarrow S$	$\rho \mathbf{R}(t)$	R, S	R	immunity loss

${ }^{a} \mathbf{I}(t)$ denotes sum of all I at time t etc.

dependency graph: draw edge $E_{i j}$ iff affects $(i) \cap$ depends $(j) \neq \emptyset$
update: reaction i happens \rightarrow propensity update for $U_{i}=\left\{j: E_{i j} \neq 0\right\}$

Gibson-Bruck method: indexed priority queue

- priority queue: data structure such that elements with highest priority are served first
- binary heap: complete binary tree, key stored in each node is either less than or equal to the keys in the node's children
- $\mathcal{O}(\log n)$ performance for inserts and removals, and $\mathcal{O}(\log n)$ to build heap from n elements

Gibson-Bruck method: algorithm

1: set $\mathrm{t}=0$; generate dependency graph \mathcal{D} of reactions; calculate propensity function α_{i} for each reaction $i=1, \ldots, M$; draw $\tau_{i} \sim \operatorname{Exp}\left(\alpha_{i}\right)$; write absolute time $t_{i}=t+\tau_{i}$ in an indexed priority queue given by heap \mathcal{Q}.
while $t<t_{\text {max }}$ do
choose next reaction R_{μ} with μ root in \mathcal{Q}
update stoichiometry, i.e. copy number of molecules after reaction R_{μ}, set $t=t_{\mu}$
update reaction rates α_{i} for $i \in U_{\mu}$ using \mathcal{D}
update next reaction times in \mathcal{Q} for updated α_{i} without new random number draw:

$$
t_{i, \text { new }}=\underbrace{\frac{\alpha_{i, \text { old }}}{\alpha_{i, \text { new }}}}_{\tau_{i, \text { new }}}\left(t_{i, \text { old }}-t\right)+t
$$

end while
return trajectory for each species and reaction times

Malaria toy model: Gillespie-type simulation

Where does the term $\frac{V}{H}$ come from?

- α host seeking and biting rate
- then, $\alpha(U+V)$ is expected number of bites
- $\frac{\alpha(U+V)}{H}$ are expected number of bites per human
- multiply with infectious mosquito density $\frac{V}{U+V}$ gives
- $\frac{V}{U+V} \frac{\alpha(U+V)}{H}=\frac{\alpha V}{H}$

$$
\begin{aligned}
\frac{d S}{d t} & =-\alpha S \frac{V}{H}+\gamma I \\
\frac{d I}{d t} & =\alpha S \frac{V}{H}-\gamma I \\
\frac{d U}{d t} & =-\beta U \frac{I}{H}+\mu(U+V)-\delta U \\
\frac{d V}{d t} & =\beta U \frac{l}{H}-\delta V
\end{aligned}
$$

$$
\begin{aligned}
\frac{d S}{d t} & =-\alpha V \frac{S}{H}+\gamma I \\
\frac{d I}{d t} & =\alpha V \frac{S}{H}-\gamma I \\
\frac{d U}{d t} & =-\beta U \frac{I}{H}+\mu(U+V)-\delta U \\
\frac{d V}{d t} & =\beta U \frac{I}{H}-\delta V
\end{aligned}
$$

- 4 species: S, I, U, V
- 7 reactions: $S+V \rightarrow I+V, I \rightarrow S$,

$$
\begin{aligned}
& U+I \rightarrow V+I, U \rightarrow \emptyset, V \rightarrow \emptyset, U \rightarrow 2 U \\
& V \rightarrow U+V
\end{aligned}
$$

- 7 intensities: $\alpha \frac{S}{H}, \gamma I, \beta \frac{U}{H}, \delta U, \delta V, \mu U$, μV,
- stoichiometry 4×7 matrix:

$$
\left[\begin{array}{ccccccc}
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 0 & 1 & 1 \\
0 & 0 & +1 & 0 & -1 & 0 & 0
\end{array}\right]
$$

For this model, the basic reproduction number is

$$
\mathcal{R}_{0}=\sqrt{\frac{\alpha \beta(U+V) / H}{\mu \gamma}}
$$

Malaria toy model

Simulate with GillespieSSA and obtain an endemic equilibrium!
Choose $H=1000, U+V=5000, \mu=\delta=1 / 10, \beta=\alpha=0.03$ and search some values for γ in literature! Change the ratio of mosquito $M=U+V$ to human $H=S+I$! Plot the curve of infected humans over two year!
R 10_RossMcDonaldGillespie.R

$$
\begin{aligned}
\frac{d S}{d t} & =-\alpha V \frac{S}{H}+\gamma I \\
\frac{d I}{d t} & =\alpha V \frac{S}{H}-\gamma I \\
\frac{d U}{d t} & =-\beta U \frac{I}{H}+\mu(U+V)-\delta U \\
\frac{d V}{d t} & =\beta U \frac{I}{H}-\delta V
\end{aligned}
$$

method

- Gillesp
- ODE

Asymptomatic Malaria toy model: Gillespie-type simulation

Asymptomatic infections

Based on our Malaria toy model, we consider three classes of infected populations: confirmed cases I_{c} who are treated before gametocytemia, asymptomatic with high gametocytemia I_{h} and and asymptomatic with low gametocytemia I_{I}. We assume that hosts with high/low gametocytemia have a transmission rate β_{h}, β_{l}. The duration of infection with positive gametocytemia for I_{c}, I_{h}, I_{l} is $10,45,15$ days resp.

Asymptomatic Malaria toy model: Gillespie simulation

Andolina et al. 2021: The bar heights indicate the proportion of mosquitoes that became
infected when feeding on this population. The bar widths indicate the proportion of the infected population.

Asymptomatic infections

Use the figure to discuss parameters for proportions of I_{c}, I_{h}, I_{ℓ} and the ratio of β_{h} over β_{ℓ}. Draw the flow diagram, use parameters from the toy model, write the reactions, rates and stoichiometric vectors. Simulate the dynamics of infection compartments with the Gillespie algorithm!

Proposed solution:

- New infections: Exposure to infectious mosquitoes V creates new infections in I_{c}, I_{h}, I_{ℓ} at rate $\alpha_{c}=p_{c} \alpha, \alpha_{h}=p_{h} \alpha$ and $\alpha_{\ell}=p_{\ell} \alpha$ where EIR $\alpha=2$ and [$\left.p_{c}, p_{h}, p_{\ell}\right]=[0.05,0.17,0.78]$ the relative proportion of confirmed/treated, high and low parasitemia infections after a mosquito bite.
- clearance rates for human infections are $\gamma_{c}=1 / 10, \gamma_{h}=1 / 45, \gamma_{\ell}=1 / 15$.
- For transmission from humans to vectors, we assume that $\beta_{c}=0.03$ and $\beta_{h}=0.08$ and $\beta_{\ell}=K \beta_{h}$ for $K=0.84 / 0.16$, i.e. the transmission ratio into I_{h} vs I_{c} infections.
- The life-cycle for the mosquitoes populations remains as in the toy-model before.
- R 11_RossMcDonaldGillespieAsymptomatic.R

Asymptomatic Malaria toy model: biochemical reaction system
(1) $S+V \rightarrow I_{c}+V$ at rate $\alpha p_{c} \frac{S}{H}$

AIMS
(2) $S+V \rightarrow I_{h}+V$ at rate $\alpha p_{h} \frac{S}{H}$
(3) $S+V \rightarrow I_{\ell}+V$ at rate $\alpha p_{\ell} \frac{S}{H}$
(9) $I_{c} \rightarrow \emptyset$ at rate γ_{c}
(0) $I_{h} \rightarrow \emptyset$ at rate γ_{h}
(-) $I_{\ell} \rightarrow \emptyset$ at rate γ_{ℓ}
(1) $U+I_{c} \rightarrow V+I_{c}$ at rate $\beta_{c} \frac{U}{H}$
(8) $U+I_{h} \rightarrow V+I_{h}$ at rate $\beta_{h} \frac{U}{H}$
(0) $U+I_{\ell} \rightarrow V+I_{\ell}$ at rate $\beta_{\ell} \frac{U}{H}$
(10) $U \rightarrow \emptyset$ at rate δ
(1) $V \rightarrow \emptyset$ at rate δ

(1) $U \rightarrow U+U$ at rate μ
(3) $V \rightarrow U+V$ at rate μ

Asymptomatic Malaria toy model: Gillespie simulation

With initial conditions $H=10000, I_{c}(t)=20, I_{h}(0)=5, I_{\ell}(0)=10$ and $V(0)=8$ and $U(0)=49992$, we obtain an endemic equilibrium of confirmed cases prevalence at roughly 3%, while a large part of the population is infected without symptoms at low-level parasitemia:

Test and treat vs. mass drug administration

For the asymptomatic model, we want to evaluate two different intervention strategies:

- test and treat: the antigen-based diagnostics has a sensitivity to detect 95% of asymptomatic cases with high gametocytemia and 15% with low gametocytemia, all positively tested are treated.
- mass drug administration: 95% of the entire population gets drug treatment, regardless of infection status

Simulate trajectories for the two strategies and the counterfactual starting from the endemic equilibrium obtained from the preceding exercise! What is your metric of evaluation and which intervention would you recommend?

For test and treat we assume that both I_{h} and I_{ℓ} move to treated compartment T. For mass drug administration, we also assume that S move into T.
(44) $I_{h} \rightarrow T$ at rate T_{h}
(15) $I_{\ell} \rightarrow T$ at rate T_{ℓ}
(10) $S \rightarrow T$ at rate M
(1) $T \rightarrow S$ at rate $r=1 / 30$

R

12_RossMcDonaldGillespieAsymptomatic_TTvsMB'A.R

- test and treat: $\mathrm{T}_{h}=0.95, \mathrm{~T}_{\ell}=0.15$ and $\mathrm{M}=0, r=1 / 30$
- MDA: $\mathrm{T}_{h}=\mathrm{T}_{\ell}=\mathrm{M}=0.98, r=1 / 30$

- counterfactual
- MDA

- test\&treat

Prevalence is close to 0 within 3 months, test sensitivity for I_{ℓ} is crucial to achieve elimination,

Stochastic differential equation heuristics

- consider SIR stochastic process $X(t)=[S(t), I(t)]$ s.th. for $\bar{X}(t)=\mathbb{E}(X(t))$

$$
\frac{d \bar{S}}{d t}=-\beta \bar{S} \overline{\bar{N}} \quad \frac{d \bar{l}}{d t}=\beta \bar{S} \overline{\bar{N}}-\gamma \bar{l}
$$

Stochastic differential equation heuristics

- consider SIR stochastic process $X(t)=[S(t), I(t)]$ s.th. for $\bar{X}(t)=\mathbb{E}(X(t))$

$$
\frac{d \bar{S}}{d t}=-\beta \bar{S} \frac{\overline{\bar{N}}}{d t} \quad \frac{d \bar{l}}{d}=\beta \bar{S} \frac{\overline{\bar{N}}}{\bar{N}}-\gamma \bar{l}
$$

- divide time interval $[0, t]$ into subintervals of length Δt, with

$$
\Delta X(t)=[\Delta S(t), \Delta I(t)]=[S(t+\Delta t)-S(t), I(t+\Delta t)-I(t)]
$$

Stochastic differential equation heuristics

- consider SIR stochastic process $X(t)=[S(t), I(t)]$ s.th. for $\bar{X}(t)=\mathbb{E}(X(t))$

$$
\frac{d \bar{S}}{d t}=-\beta \bar{S} \frac{\overline{\bar{N}}}{d t} \quad \frac{d \bar{l}}{d}=\beta \bar{S} \frac{\overline{\bar{N}}}{\bar{N}}-\gamma \bar{l}
$$

- divide time interval $[0, t]$ into subintervals of length Δt, with

$$
\Delta X(t)=[\Delta S(t), \Delta I(t)]=[S(t+\Delta t)-S(t), I(t+\Delta t)-I(t)]
$$

- further divide Δt s.th. for $\Delta t_{i}=t_{i}-t_{i-1}: \sum_{i}^{n} \Delta t_{i}=\Delta t$ and

$$
\Delta X(t)=\sum_{i} \Delta X\left(t_{i}\right)
$$

Stochastic differential equation heuristics

- consider SIR stochastic process $X(t)=[S(t), I(t)]$ s.th. for $\bar{X}(t)=\mathbb{E}(X(t))$

$$
\frac{d \bar{S}}{d t}=-\beta \bar{S} \frac{\overline{\bar{N}}}{d t} \quad \frac{d \bar{l}}{d t}=\beta \bar{S} \frac{\bar{\prime}}{\bar{N}}-\gamma \bar{l}
$$

- divide time interval $[0, t]$ into subintervals of length Δt, with

$$
\Delta X(t)=[\Delta S(t), \Delta I(t)]=[S(t+\Delta t)-S(t), I(t+\Delta t)-I(t)]
$$

- further divide Δt s.th. for $\Delta t_{i}=t_{i}-t_{i-1}: \sum_{i}^{n} \Delta t_{i}=\Delta t$ and

$$
\Delta X(t)=\sum_{i} \Delta X\left(t_{i}\right)
$$

- if Δt_{i} small, assume $\Delta X\left(t_{i}\right)$ are iid on Δt

Stochastic differential equation heuristics

- consider SIR stochastic process $X(t)=[S(t), I(t)]$ s.th. for $\bar{X}(t)=\mathbb{E}(X(t))$

$$
\frac{d \bar{S}}{d t}=-\beta \bar{S} \frac{\overline{\bar{N}}}{d t} \quad \frac{d \bar{l}}{d t}=\beta \bar{S} \frac{\bar{\prime}}{\bar{N}}-\gamma \bar{l}
$$

- divide time interval $[0, t]$ into subintervals of length Δt, with

$$
\Delta X(t)=[\Delta S(t), \Delta I(t)]=[S(t+\Delta t)-S(t), I(t+\Delta t)-I(t)]
$$

- further divide Δt s.th. for $\Delta t_{i}=t_{i}-t_{i-1}: \sum_{i}^{n} \Delta t_{i}=\Delta t$ and

$$
\Delta X(t)=\sum_{i} \Delta X\left(t_{i}\right)
$$

- if Δt_{i} small, assume $\Delta X\left(t_{i}\right)$ are iid on Δt
- for n large, CTL: $\frac{1}{\sqrt{n}}(\Delta X(t)-\mathbb{E}(\Delta X(t))) \sim \mathcal{N}(0, \operatorname{cov}(\Delta X(t)))$

Stochastic differential equation heuristics

At the order of Δt :

$$
\mathbb{E}(\Delta X(t)) \approx\left[-\beta \bar{S} \frac{\bar{l}}{\bar{N}}, \beta \bar{S} \overline{\bar{l}} \overline{\bar{N}}-\gamma \bar{I}\right] \Delta t=f \Delta t
$$

Stochastic differential equation heuristics

At the order of Δt :

$$
\mathbb{E}(\Delta X(t)) \approx\left[-\beta \bar{S} \frac{\overline{\bar{N}}}{\bar{N}}, \beta \bar{S} \frac{\bar{S}}{\bar{N}}-\gamma \bar{l}\right] \Delta t=f \Delta t
$$

At the order of Δt :

$$
\operatorname{cov}(\Delta X) \approx \mathbb{E}\left((\Delta X)(\Delta X)^{T}\right)=\left(\begin{array}{cc}
\operatorname{cov}(\Delta S, \Delta S) & \operatorname{cov}(\Delta S, \Delta I) \\
\operatorname{cov}(\Delta S, \Delta I) & \operatorname{cov}(\Delta I, \Delta I)
\end{array}\right)
$$

Stochastic differential equation heuristics

At the order of Δt :

$$
\mathbb{E}(\Delta X(t)) \approx\left[-\beta \bar{S} \frac{\overline{\bar{N}}}{\bar{N}}, \beta \bar{S} \frac{\bar{S}}{\bar{N}}-\gamma \bar{l}\right] \Delta t=f \Delta t
$$

At the order of Δt :

$$
\begin{gathered}
\operatorname{cov}(\Delta X) \approx \mathbb{E}\left((\Delta X)(\Delta X)^{T}\right)=\left(\begin{array}{cc}
\operatorname{cov}(\Delta S, \Delta S) & \operatorname{cov}(\Delta S, \Delta I) \\
\operatorname{cov}(\Delta S, \Delta I) & \operatorname{cov}(\Delta I, \Delta I)
\end{array}\right) \\
\operatorname{cov}(\Delta X) \approx\left(\begin{array}{cc}
\beta S \frac{I}{N} & -\beta S \frac{I}{N} \\
-\beta S \frac{1}{N} & \beta S \frac{1}{N}+\gamma I
\end{array}\right) \Delta t=C \Delta t
\end{gathered}
$$

Stochastic differential equation heuristics: covariance

By assumption $\Delta X\left(t_{i}\right)$ are iid on Δt, and with $\Delta t=n \Delta t_{i}$ s.th.

$$
\begin{aligned}
\mathbb{E}\left(\Delta X_{1}^{2}\right) & =\mathbb{E}\left(\Delta S^{2}\right)=\mathbb{E}\left(\sum_{i} \Delta S\left(t_{i}\right)^{2}\right) \\
& =\sum_{i} \mathbb{E}\left(\Delta S\left(t_{i}\right)^{2}\right)+2 \sum_{i<j} \mathbb{E}\left(\Delta S\left(t_{i}\right)\right) \mathbb{E}\left(\Delta S\left(t_{j}\right)\right) \\
& =n \mathbb{E}\left(\Delta S\left(t_{0}\right)^{2}\right)+n(n-1) \mathbb{E}\left(\Delta S\left(t_{0}\right)\right)^{2} \\
& =n(-1)^{2} \Delta t_{1} \beta l\left(t_{0}\right) \frac{S\left(t_{0}\right)}{N}+n 0^{2}\left(1-\Delta t_{1} \beta l\left(t_{1}\right) \frac{S\left(t_{1}\right)}{N}\right)+(\Delta t)^{2}\left(1-\frac{1}{n}\right)\left(\beta l\left(t_{1}\right) \frac{S\left(t_{1}\right)}{N}\right)^{2} \\
& \approx \Delta t \beta I\left(t_{0}\right) \frac{S\left(t_{0}\right)}{N}
\end{aligned}
$$

at the order of Δt with $\mathbb{P}\left(\Delta S\left(t_{i}\right)=-1\right)=\Delta t_{i} \beta l\left(t_{i-1}\right) \frac{S\left(t_{i-1}\right)}{N}$

Stochastic differential equation heuristics

Stochastic differential equation

$$
\Delta X(t) \approx f(X(t)) \Delta t+G(X(t)) \Delta W(t)
$$

Stochastic differential equation heuristics

Stochastic differential equation

$$
\Delta X(t) \approx f(X(t)) \Delta t+G(X(t)) \Delta W(t)
$$

- Here, the matrix G is such that $G G^{T}=C$ and

Stochastic differential equation heuristics

Stochastic differential equation

$$
\Delta X(t) \approx f(X(t)) \Delta t+G(X(t)) \Delta W(t)
$$

- Here, the matrix G is such that $G G^{T}=C$ and
- $\Delta W=\left[\Delta W_{1}, \Delta W_{2}\right]$ with $\Delta W_{i} \sim \mathcal{N}(0, \Delta t)$

Euler-Maruyama algorithm

We implement

$$
\Delta X(t) \approx f(X(t)) \Delta t+G(X(t)) \Delta W(t)
$$

by first order scheme

$$
X[i+1]=X[i]+f(X[i]) \Delta t+G(X[i]) \eta \sqrt{\Delta t}
$$

where $\eta \in \mathbb{R}^{d}$ with $\eta_{k} \sim \mathcal{N}(0,1)$ and d is the number of reactions.

Euler-Maruyama algorithm for SIR

In our SIR example:

$$
\begin{gathered}
f(S, I)=\binom{-\beta S \frac{1}{N}}{\beta S \frac{1}{N}-\gamma I} \\
G(S, I)=\left(\begin{array}{cc}
-\sqrt{\beta S \frac{1}{N}} & 0 \\
\sqrt{\beta S \frac{1}{N}} & -\sqrt{\gamma I}
\end{array}\right)
\end{gathered}
$$

Just take square roots of the rates from the ODE!

Implementation of Euler-Maruyama

Code the Euler-Maruyama scheme in R for the influenza boarding school SIR model! Simulate several trajectories! When choosing $\beta>\gamma$, do you have simulations where I get extinct early on? R 13_ForwardEulerMaruyamaSIR.R

Euler-Maruyama algorithm for SIR

Malaria toy model with stochastic differential equation

Euler-Maruyama for Malaria toy model
Implement the stochastic differential equation version of the Malaria toy model in R.
R 14_RossMcDonaldForwardEulerMaruyama.R

Sellke's method: infectious pressure

- probabilistically equivalent to SIR process
- iid $Q_{1}, \ldots, Q_{n} \sim \operatorname{Exp}(1)$ for n susceptibles
- iid $T_{-(m-1)}, \ldots, T_{n}$ infection durations, any distribution on \mathbb{R}_{+}(e.g. gamma, Weibull)
- m initially infected $T_{-(m-1)}, \ldots, T_{0}$
- $I(t)=$ number of infected at time t
- infectious " pressure" $\Lambda(t)=\int_{0}^{t} I(s) d s$

Sellke's method: infectious pressure

- susceptible i accumulates exposure to infection at rate equal to number of infected individuals
- ith susceptible becomes infected by time t_{i} if infectious pressure reached: $\Lambda\left(t_{i}\right)=Q_{i}$
- individual who was j th infected remains infected for time T_{j} and then clears
- infections happen at the right time:

$$
\begin{aligned}
& \mathbb{P}(\text { susceptible } i \text { infected by } t+d t \mid \text { not infected by } t)= \\
& =\mathbb{P}\left(Q_{i}<\Lambda(t+d t) \mid Q_{i}>\Lambda(t)\right)=\frac{\mathbb{P}\left(\Lambda(t)<Q_{i}<\Lambda(t+d t)\right)}{\mathbb{P}\left(Q_{i}>\Lambda(t)\right)} \\
& \approx \frac{\left(1-e^{-\Lambda(t+d t)}\right)-\left(1-e^{-\Lambda(t)}\right)}{e^{-\Lambda(t)}}=1-e^{-[\Lambda(t+d t)-\Lambda(t)]}=1-e^{-\Lambda^{\prime}(t) d t} \\
& =\Lambda^{\prime}(t) d t=\beta I(t) d t
\end{aligned}
$$

- advantage: generalize straight-forward to infection duration with memory

Stochastic simulation algorithms: summary table

algorithm	time	space	conv	non-Mark.	in practice
exact Gillespie	C	D	\checkmark	X	only for simple systems, slow
first reaction Gillespie	C	D	X	X	no need to sample next reaction
tau-leap Gillespie	D	D	X	X	fast for simple systems, step size tuning
Gillespie-Boguña	C	D	X	\checkmark	only for simple systems, slow
Gillespie-Gibson-Bruck	C	D	X	\checkmark	fast for system with many reactions
Sellke	C	D	\checkmark	\checkmark	only for simple systems
Euler-Maruyama	C	C	\checkmark	X	faster to simulate for large populations

Thanks for financial support to

GATES foundation

Swiss TPH

Swiss Tropical and Public Health Institute
internet mathoverflow, stackoverflow, chatGPT, google colab
lecture notes Anderson, Kurtz: Stochastic Analysis of Biochemical Systems
lecture notes Allen: Stochastic Population and Epidemic Models
lecture notes Ammari, Wu, Yu: Numerical Methods for ODEs
history Ross: An Application of the Theory of Probabilities to the Study of a priori pathometry. -Part I

Articles

article Lehtinen et al.
article Begon et al.

