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Question block

Discuss in class!

Important block

This is important!

Search block

Search and think outside the box (and the classroom)!

links to code in “R and A , further reading ﬁ
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Influenza outbreak in a boarding school: the data

date \ in bed \ convalescent \ total
1978-01-22 3 0 763
1978-01-23 8 0 763
1978-01-24 26 0 763
1978-01-25 76 0 763
1978-01-26 | 225 9 763
1978-01-27 | 298 17 763
1978-01-28 | 258 105 763
1978-01-29 | 233 162 763
R
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Influenza outbreak in a boarding school: model hypotheses Uios
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e time series of symptomatic (i.e. infectious) cases
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e time series of symptomatic (i.e. infectious) cases
ordinary differential equations/ Markov process, what happens next depends only on now
@ homogeneous population
compartments for susceptible S, infectious /, recovered R individuals
o closed population, no deaths
constant population size, no births nor migration
o well-mixed population
mass action principle, force A\(/) acting on mass S
@ denser population in dormitory = more infections
density-dependent (vs. frequency-dependent) force
o full immunity upon recovery
recovered individuals cannot become susceptible again

&/7T01



Influenza outbreak in a boarding school: bathtubs MoMod

A

Africa

s“‘"‘%
4% AIMS

susceptible —>| infectious

l)l recovered |

Introduction

9 /101



Influenza outbreak in a boarding school: bathtubs MoMod

A

Africa

s\\\w@‘
4% AIMS

susceptible —>| infectious

l)l recovered |

Introduction

9 /101



Influenza outbreak in a boarding school: bathtubs MoMod

VD

Africa

s\\\w@‘
4% AIMS

susceptible —>| infectious

l)l recovered I

Introduction

9 /101



Influenza outbreak in a boarding school: compartments

/O

susceptible —=| infectious

Introduction

recovered

MaMod
Africa

s\\\w@‘
4% AIMS

10 / 101



Influenza outbreak in a boarding school: compartments MoMod
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4.8 AIMS
susceptible —>| infectious|—| recovered

@ rate = number of events happening within time step A
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Influenza outbreak in a boarding school: compartments
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susceptible —

@ rate = number of events happening within time step A

infectious

@ 7 recovery rate from infection
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Influenza outbreak in a boarding school: compartments

/O

susceptible —=| infectious

@ rate = number of events happening within time step A

@ 7 recovery rate from infection

e )\ = \(/) force of infection rate

Introduction
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Influenza outbreak in a boarding school: compartments Mgf'\gi%z
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Recurrence equation with update linear in time increment A

S(t+A) = S(t)+A{=A(/())S()}
I(t+A4) = 1(t)+ A{A(I(1))S(t) =/}
R(t+A) = R(t)+A{yI(t)}
Initial condition

5(0) = S <N
Ih >0

—
)
=
N
Il

T 70



Influenza outbreak in a boarding school: force of infection iaMod

Sy

£ AIMS

S

i,

Force of infection

A(/) rate at which new infectious created from susceptible
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Force of infection A

A(/) rate at which new infectious created from susceptible

i,

Density-dependent transmission

I

Per capita contact rate between susceptible and infected depends on the population
density. Transmission rates increase with density.
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Influenza outbreak in a boarding school: force of infection iaMod
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Force of infection A

A(/) rate at which new infectious created from susceptible

Density-dependent transmission A

Per capita contact rate between susceptible and infected depends on the population
density. Transmission rates increase with density.

Frequency-dependent transmission A

Per capita contact rate between susceptible and infected does not depend on the
population density. Transmission rates do not change with density.

S 7777 e — By
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Africa
s\\\\w%
2. AIMS
Density-dependent transmission Frequency-dependent transmission
more individuals per area increases transmission more individuals, no impact transmission
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Density- vs frequency-dependent transmission MoMod
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Density-dependent transmission Frequency-dependent transmission
more individuals per area increases transmission more individuals, no impact transmission

0 87 - 0 0

Influenza, Coronavirus, Malaria?, Polio HIV, Malaria?

Introduction 13 / 101
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Force of infection formula

A = cﬁv with contact rate, probability of contact with infected individual, probability
that contact S+— | leads to transmission

Two choices for contact rate:
1l c= k%: slope k of density-dependent contact rate per area A :

M) =kBvE = %v =8I
~—~
B
2 ¢ = k' constant, frequency-dependent contact rate:

/ /|
M) =Ky dy=54%
Bl
70



ity- . issi MaMod
Density- vs frequency-dependent transmission Moo

£ ¢ AIMS

Force of infection formula

A = cﬁv with contact rate, probability of contact with infected individual, probability
that contact S<— | leads to transmission

1 density-dependent \(/) = 3/
2 frequency-dependent \(/) = 3'4;

If N constant: mathematically equivalent but 5 " different biological meaning

Begon et al. ﬁ

15 701


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869860/pdf/12211582.pdf
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e linear \(/) ~ I: mass action A(N)
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e linear \(/) ~ I: mass action A(N)
e quadratic \(/) ~ /% panic behavior
I
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Non-linear force of infection (foi)

e linear \(/) ~ I: mass action

e quadratic \(/) ~ /% panic behavior

e Michaelis-Menten \(/) ~ b"”—l,: a maximum rate,
b level of I by which half of A reached, saturation

Introduction

(1)

MaMod
Africa

s\\\w@‘
4% AIMS

16 / 101



Non-linear force of infection (foi)

e linear \(/) ~ I: mass action A1)

e quadratic \(/) ~ /% panic behavior

e Michaelis-Menten \(/) ~ b"”—l,: a maximum rate,

b level of I by which half of A reached, saturation

e crowding A(/) ~ : saturation

b+/2

Introduction
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Non-linear force of infection (foi)

linear \(/) ~ I: mass action

quadratic \(/) ~ I?: panic behavior

Michaelis-Menten X(/) ~ 25
b level of I by which half of A reached, saturation

crowding A\(/) ~ W

: saturation

(1)

a maximum rate,

MaMod
Africa

£ % AIMS

intervention \ ~ ﬁ f>0 f>0

Introduction
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Influenza outbreak in a boarding school: differential equation MaMod
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@ Recurrence equation with time increment A and tp = O:
S(t+A) = S(t)+A{=A(I(2)S(t)} (1)
I(t+A) = I(t)+A{A(I(1)S(t) —vI(1)} (2)
R(t+A) = R(t)+ Avl(t) (3)
(4)
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Influenza outbreak in a boarding school: differential equation MaMod
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@ Recurrence equation with time increment A and tp = O:
S(t+A) = S(t)+A{=X(/(2))S(t)} (1)
I(t+A) = I(t)+A{A(I(1)S(t) —vI(1)} (2)
R(t+A) = R(t)+ Avl(t) (3)
(4)

o First order differential equation, for all t > 0:
S(t+A)—-S5(t) dS

Ahmo A dt ADS
A+ A)—1(t)  dl
A= @ ~ MDA
. R(t+A)—R(t) dR
= — = I
A A dt i

7 70



Explicit first order Euler scheme for SIR model with linear foi MoMod
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For equidistant time points 0 =ty < t; < --- < t, write A = At =tj;1 — t;, and
t, = kAt:
S(tin) = S(6)+ A {=51(5)S(t)} (5)
I(t1) = 1)+ A{R1(6)S(E) 1} (6)
R(tiv1) = R(ti)+ AvI(t;) (7)

6 701



Explicit first order Euler scheme for SIR model with linear foi MoMod

' Africa
%% AIMS
For equidistant time points 0 =ty < t; < --- < t, write A = At = tj1; — t;, and
t,e = kAt:
S(tin) = S(t)+A{-F1(e)s(t)} (5)
(tin) = 1(6)+A{51(8)S(E) 1} (6)
R(tiv1) = R(ti)+ AvyI(ti) (7)

Group work: Solve the influenza SIR model numerically in R!

o Create a sequence of time steps t; up to 15 days with step size A = 0.5
o Create data frame, first row is initial condition S =762,/ =1,R =0

e S =1.1,v=0.5 N =763, try different 5 such that % <1or % >1

o Write a loop over / and plot the graph t; — I(t;) ‘R 01_ForwardEulerSIR.R

To 7 101



Numerical schemes, generally speaking o
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Numerical scheme for ordinary differential equation

Given an ODE % = f(t, x) an (explicit one-step) scheme is given by continuous function
®(t,x, h) with mesh 0=ty < t; <...t, = T and At = t;;1 — t; s.th.

XKL = xk 1 Atd (1, x5, At)

.

Truncation error A

. . k+1__  k
The truncation error is Ty (At) = % +Atx — O(ty, x(tx), At)

I|m Tk(At)— & — O(tk, x,0)

10701



Numerical schemes: Consistency, stability, convergence Uaios
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The scheme is consistent with the ODE if ®(t,x,0) = f(t, x)

Stability A

The scheme is stable if x — ®(t, x, h) is globally Lipschitz (i.e. almost differentiable)

Convergence

The scheme is converging if the global error |x* — x(t)| — 0 as At — 0

SO



Numerical schemes: Convergence = Consistency + Stability Uios
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Dahlquist-Lax Theorem A

Convergence < Consistency + Stability

Explicit Euler is convergent @

Set ®(ty, x5, h) = f(tx,x¥), for h € [0,H],t € [0, T]. Discuss why this scheme is
convergent!

.

Remember from highschool: Taylor expansion
Any smooth function ¢ can be written locally around a point a:

X—a X—a 2
p(x) = p(a) + U2 Lop(a) + L& o) + ..

SO



Numerical schemes: Higher order Mgf'\".OS
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e Apply Taylor to solution curve t — x(t) at discretization points t:

X(ter1) = x(tx + At) = x(tx) + 2 Lx(ti) + (Azf) &ox(te) + - ..

o since Lx(ty) = (£, x(t)), and Lox(t) = OL(t, xk) + OL(t, k) Lx(t, k)
@ numeric scheme

x(ti1) = x(t) + (AF(e,x(8)) + (A1) { G (t,x0) + G2 (8 x)F (£, x(t)) }

Second order for SIR model

Calculate the second order term of the scheme for each component of the SIR model
and add it to the R code! Idem for the SIR model with quadratic force of infection

function! Compare!

ST
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@ Second order scheme: accurate, but f needs to be differentiable = integral equation:

x(tesn) = x(t) + / " f(s)ds

ty

o Left endpoint rule:ftt:+1 f(s)ds ~ (At)f(tx) with (forward Euler) scheme:

x(tir1) = x(8) + (ADF(t, x¥)

SO



Implicit numerical schemes: Trapezoidal rule fiaMod
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e Trapezoidal rule: ftik“ f(s)ds ~ (At)% (f(te, x(tk)) + f(tks1, x(tk41))) with implicit
scheme
x(ties1) = x(te) + (A1)} (f(tk,xk) n f(tk+1,xk+1)>

T a
| /\A |

g T
> Tj_1 T Tjt1

AT



Implicit numerical schemes: Trapezoidal rule Uios
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Group A work: Solve influenza SIR model numerically in R! @>

@ Solve the SIR model numerically using the function ode in the package deSolve
(e.g. find syntax on stackoverflow or ChatGPT)

@ look up in the help menu 7ode different methods and their required parameters ‘R
02_deSolveSIR.R

Group B work: Do-it-yourself trapezoidal scheme!

@ Solve the SIR model numerically by implementing the trapezoidal scheme in R!
DPenuse-ChatGPF you can use ChatGPT, but explain the result.“R
03_SIR_trapezoidal.R

ST



Serial interval, generation time, incubation time Mgf'\ﬂigg

£ ¢ AIMS
The figure below from Lehtinen et al. shows between infector / and infectee j:

e G, generation time: time
between infection of / and j

i ntec(nr ("

1 ° . - -
o S, serial interval: time
P .
v — between symptom onset of /
1 .
= — and j
i e i
N - % @ /, incubation time: time
MEKC @ nfecion @ symptom onset between infection of / and

symptom onset of j

Generation time and serial interval

Which of the three quantities G,S,/ can be negative? What is the epidemiological
meaning in this case? Can you give an example?

2T
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s\\\\w%
2. AIMS

@ time increments t; =i € N

e



Influenza outbreak in a boarding school: difference equation iaMod

s\\\w@‘
4% AIMS

@ time increments t; =i € N

e generation time distribution g : N — [0,1], i.e. g(k) is probability of a primary infection
causing a secondary infection after k time steps
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@ time increments t; =/ € N

e generation time distribution g : N — [0,1], i.e. g(k) is probability of a primary infection
causing a secondary infection after k time steps

o force of infection A(/)(i) = 5>, %g(k) non-Markovian
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Influenza outbreak in a boarding school: difference equation Mgf'\fi%z
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@ time increments t; =/ € N

e generation time distribution g : N — [0,1], i.e. g(k) is probability of a primary infection
causing a secondary infection after k time steps

e force of infection A(/)(i) = sz N(: k) g(k), non-Markovian
o Difference equation: 3,~ are probab|l|t|es

S(i+1) = S>i)— A ()S()
I +1) = 1()+XD()S3) — ~1(i)
R(i+1) = ~I(i)

P



Influenza outbreak in a boarding school: difference equation Mgm%z
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@ time increments t; =i € N

e generation time distribution g : N — [0,1], i.e. g(k) is probability of a primary infection
causing a secondary infection after k time steps
e force of infection A(/)(i) = sz N(: k) g(k), non-Markovian

o Difference equation: 3,~ are probab|l|t|es

S(i+1) = S(i)—MNH()S(¥)
1(i+1) = 1(i))+X)()S() —~I(i)
e seR L) = ot
Update for next time step depends not only on now, but also past events!

P
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event:_infectious individual arrives

[dormitory

SETOT
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event: movement
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Influenza outbreak in a boarding school: events Uios
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event: infectious individuals transmits, two infected

l[dormitory
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Influenza outbreak in a boarding school: events Uios
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event: the first infected individual recovers

ldormitory

SETOT



Why stochastic dynamics? aMod

Many phenomena in biology are intrinsically random and multi-scale!

HA Release

Budding
Sialated receptor
x r

(A)

/'co.gi apparatus
||||III| ....
mRNA symhesls

Fusion RNA replication

Endosome
(low pH)

microbiology

@ stochastic algorithms

index household social
person member
contact

Shared spaces

individual to population

’ Distance

biophysics

need rules, not explicit functions, flexible!

@ stochastic algorithms explore probabilistic questions: extinction, criticality

Stochastics
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Why randomness in mathematics?
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"mean-field approximation” of deterministic equations by stochastic algorithm

—'mmﬂJ

3
L_r"\_r"\_{‘"_.' L W W T W W W W W

SUIARARTE WALTENEFL| 1904 COAIAMTHEIE R
et B R T o W WP o

Law of Large Numbers (LLN) A

Mean of iid samples converges to expected
value!
X; iid r.v., then

lim 1(X1 +...X,) = E(X)

n—o0

strong LLN: a.s. convergence
weak LLN: convergence in probability

Stochastics

30 / 101
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"mean-field approximation” of deterministic equations by stochastic algorithm

Central Limit Theorem (CLT) A

Rescaled mean of iid samples with equal
variance has Gaussian law as limit
distribution!

X; iid r.v. with var(X;) = 02, and Y r.v.
with law N(0,02), then

lim Vni(Xi+...X,) =Y

n—oo

CLT: convergence in probability

ST
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events F, what can happen with things, e.g. head/tail in coin toss
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stochastic=random=aleatory=chance="7
axioms of probability: universe+events+probability
universe $2: things, e.g. head, tail or infection, recovery
events F, what can happen with things, e.g. head/tail in coin toss
probability P: (Q,F) — [0, 1]
Axiom 1 P(Q) =1
Axiom 2 For any event E: P(E) =1—-P(Q\ E)
Axiom 3 if E; disjoint, then P (; Ei) = >_; P(E;)
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stochastic=random=aleatory=chance="7
axioms of probability: universe+events+probability
universe $2: things, e.g. head, tail or infection, recovery
events F, what can happen with things, e.g. head/tail in coin toss
probability P: (Q,F) — [0, 1]
Axiom 1 P(Q) =1
Axiom 2 For any event E: P(E) =1—-P(Q\ E)
Axiom 3 if E; disjoint, then P (; Ei) = >_; P(E;)
random variable (r.v.) X : (Q,F,P) — (A, A) measurable
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stochastic=random=aleatory=chance="7
axioms of probability: universe+events+probability

universe $2: things, e.g. head, tail or infection, recovery

events F, what can happen with things, e.g. head/tail in coin toss
probability P: (Q,F) — [0, 1]

Axiom 1 P(Q) =1

Axiom 2 For any event E: P(E) =1—-P(Q\ E)

Axiom 3 if E; disjoint, then P (; Ei) = >_; P(E;)

random variable (r.v.) X : (Q,F,P) — (A, A) measurable
probability law of r.v. fx : (A, A) — [0, 1] with

fF(A)=P(XYA)=P(EcF:X(E)=A)for Ac A

SO
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Write down a fair coin toss as a r.v. using the definitions from above!

Discrete & continuous r.v. A

discrete r.v. universe is countable or finite

SO
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Write down a fair coin toss as a r.v. using the definitions from above!

Discrete & continuous r.v. A

discrete r.v. universe is countable or finite
Q=1{0,1} and fx({1}) = p € [0, 1] "Bernoulli"
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Write down a fair coin toss as a r.v. using the definitions from above!

Discrete & continuous r.v. A
discrete r.v. universe is countable or finite
Q=1{0,1} and fx({1}) = p € [0, 1] "Bernoulli"
Q=1{0,1,...} and fx({k}) = e 27 "Poisson”
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Write down a fair coin toss as a r.v. using the definitions from above!

Discrete & continuous r.v. A

discrete r.v. universe is countable or finite
Q=1{0,1} and fx({1}) = p € [0, 1] "Bernoulli"
Q=1{0,1,...} and fx({k}) = e 27 "Poisson”

continuous r.v. universe is uncountable

SO
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Write down a fair coin toss as a r.v. using the definitions from above!

Discrete & continuous r.v. A

discrete r.v. universe is countable or finite
Q=1{0,1} and fx({1}) = p € [0, 1] "Bernoulli"
Q=1{0,1,...} and fx({k}) = e 27 "Poisson”
continuous r.v. universe is uncountable

Q =Ry and fx([0,a)) = X [; e M dy, but fx({b}) = 0!
"exponential distribution”

SO
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observable ¢ : A — R, then ¢(X) observable

SO
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observable ¢ : A — R, then ¢(X) observable
expectation : E(o(X)) 1= >, @(y)fx(y) resp. [, 0(y)fx(y)dy

SO
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observable ¢ : A — R, then ¢(X) observable

expectation : E(@(X)) := >, o(y)fx(y) resp. [,o(y)fx(y)dy

moments f(x) = x", then E(X") is nth-moment, moments fully determine
probability law of r.v.!

SO
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observable ¢ : A — R, then ¢(X) observable

expectation : E(@(X)) := >, o(y)fx(y) resp. [,o(y)fx(y)dy

moments f(x) = x", then E(X") is nth-moment, moments fully determine
probability law of r.v.!

independence X, Y r.v. are independent X L Y, iff
P{X e A}n{Y € B}) =P(X € A)P(Y € B)

SO
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observable ¢ : A — R, then ¢(X) observable

expectation : E(o(X)) 1= >, @(y)fx(y) resp. [, 0(y)fx(y)dy
moments f(x) = x", then E(X") is nth-moment, moments fully determine
probability law of r.v.!

independence X, Y r.v. are independent X L Y, iff
P{X e A}n{Y € B}) =P(X € A)P(Y € B)
iid X, Y iid if independent, identically distributed

SO
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observable ¢ : A — R, then ¢(X) observable
expectation : E(p(X)) := 32, ¢(y)fx(v) resp. [ (y)fx(y)dy
moments f(x) = x", then E(X") is nth-moment, moments fully determine
probability law of r.v.!
independence X, Y r.v. are independent X L Y, iff
P{X e A}n{Y € B}) =P(X € A)P(Y € B)
iid X, Y iid if independent, identically distributed

Calculate the expectation of Bernoulli and exponential r.v.!

SO
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stochastic process collection of r.v. indexed by time: t +— X(t)

SO
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stochastic process collection of r.v. indexed by time: t +— X(t)

filtration F; collection of sets of events indexed by time, information about X(t)
that is available up to time t

convergence almost sure — in probability — in expectation

SO
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stochastic process collection of r.v. indexed by time: t +— X(t)

filtration F; collection of sets of events indexed by time, information about X(t)
that is available up to time t

convergence almost sure — in probability — in expectation

Markov property P(Xit, € AlF:) = P(Xe1a € Alo(Xt))
"what happens in the future depends only on the present state”

Markov chain P(Xpt1 = Xnt1|Xn = Xny ..., X1 = x1) = P(Xnt1 = Xp41|Xn = Xxn)
"what happens in the future depends only on the present state”

SO



From memory-less processes to differential equations Uios
4.¢ AIMS
The r.v. X in Ry is without memory if:

P(X > t+s|X >s)=P(X >t)

S
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The r.v. X in Ry is without memory if:
P(X > t+s|X >s)=P(X >t)

with

P(A|B) = H455

S



From memory-less processes to differential equations fiaMod
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4.4 AIMS
The r.v. X in Ry is without memory if:
P(X > t+s|X >s)=P(X >t)
with

P(A|B) = H455

P(X >t +5) = P(X > t)P(X > s)

S



From memory-less processes to differential equations

The r.v. X in R4 is without memory if:
P(X > t+s|X >s)=P(X >t)
with

P(A|B) = "5

<
P(X >t +5) = P(X > t)P(X > s)

<= functional equation:

]P)(X > a) — ]P)(X > 1)a — elog(IP’(X>l))a — ef)\a

Stochastics

MaMod
Africa
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4% AIMS

36 / 101



From memory-less processes to differential equations

The r.v. X in Ry is without memory if:

P(X > t+s|X >s)=P(X >t)

with

—

P(B)

P(X >t +5) = P(X > t)P(X > s)

<= functional equation:

P(X >a)=P(X > 1) =

Memory-less r.v.

elog(IP’(X>1))a _

e

—Aa

MaMod
Africa

a\\\\\w%
2. AIMS

X r.v. without memory <= X exponentially distr. with A = —log(P(X > 1))

Stochastics

36 / 101



Random number generation: the physical way Uios
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A MILLION

Random Digits

WITH

100,000 Normal Deviates

buy the book... RAND
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...or move your mouse: hardware random number generator

bestuser@workstation:~ -
rch Terminal Help

est User (Best Company) <bestuser@example.com>"

Change (N)ame, (C)omment, (E)mail or (0)kay/(Q)uit? 0

le need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
lgenerator a better chance to gain enough entropy.

e need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
lgenerator a better chance to gain enough entropy.
gpg: /home/bestuser/.gnupg/trustdb.gpg: trustdb created
gpg: key 94F45C144CD3559D marked as ultimately trusted
gpg: directory '/home/bestuser/.gnupg/openpgp-revocs.d' created
gpg: revocation certificate stored as '/home/bestuser/.gnupg/openpgp-revocs.d/CC
1795E6F83B091A7B813A6D94F45C144CD3559D. rev"
public and secret key created and signed.

pub rsa2048 2020-04-23 [SC] [expires: 2021-04-23]
CC1795E6F83B091A7B813A6D94F45C144CD3559D
Best User (Best Company) <bestuser@example.com>
rsa2048 2020-04-23 [E] [expires: 2021-04-23]

[bestuser@workstation ~]$ I
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o pseudo-random number generator: linear congruence, Mersenne Twister
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o pseudo-random number generator: linear congruence, Mersenne Twister

@ quasi-random number generator: low-discrepancy sequence



Random number generation: the algorithmic way Uios

s\\\w@‘
4% AIMS

o pseudo-random number generator: linear congruence, Mersenne Twister
@ quasi-random number generator: low-discrepancy sequence

@ statistical tests of randomness
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pseudo-random number generator: linear congruence, Mersenne Twister
quasi-random number generator: low-discrepancy sequence

statistical tests of randomness

seed of random number generation, index used to "replicate” simulation



Random number generation: the algorithmic way Uios

s“‘“’%
4% AIMS

pseudo-random number generator: linear congruence, Mersenne Twister
quasi-random number generator: low-discrepancy sequence

statistical tests of randomness

seed of random number generation, index used to "replicate” simulation
cumulative distribution function (cdf) Fx(t) = P(X < t), inverse cdf (icdf) F)?l



Random number generation: the algorithmic way Uios
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pseudo-random number generator: linear congruence, Mersenne Twister
quasi-random number generator: low-discrepancy sequence

statistical tests of randomness

seed of random number generation, index used to "replicate” simulation
cumulative distribution function (cdf) Fx(t) = P(X < t), inverse cdf (icdf) Fy*

inverse transform sampling

X real-valued r.v. and U uniformly distributed r.v. on [0,1], then r.v. Fx'(U) ~ X

Randomness from the computer 53 )
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Sample from exponential distribution

random draws for r.v. X ~ Exp(\) by using uniformly distributed random numbers
in the interval [0, 1]
cdf Fx(t) = 1 — e = icdf Fl(t) = —log(—(t — 1))/A = 0=t @

04_inversesampling.R

Sample from standard normal distribution

random draws for r.v. X ~ N(0,1) by using uniformly distributed random numbers
in the interval [0, 1]

Randomness from the computer 20



i MoMod
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Sample from discrete set

X is r.v. with values in discrete set K = {ki, ko,...} with P(X = k;) = p; such that

2ipi=1

10 »
Define g : [0,1] — K with ¢ os]
g(X)—k<:>Z,1PI<X<Z,1P: 6 o—e
If U ~ uniform, then X ~ g(U): 4 o—s
Pg(U)=k) =P (Sip<U<Siip)=p = ol

0.2 0.4 0.6 0.8 1.0

Randomness from the computer 0/ il



How to measure computational complexity

e Landau notation: f(n) = O(g(n)) for n — oo if
there are M, ng > 0 such that for all n > ng:

[f(n)] < Mg(n)

Stochastics

MoaMod
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How to measure computational complexity

e Landau notation: f(n) = O(g(n)) for n — oo if
there are M, ng > 0 such that for all n > ng:

|f(n)] < Mg(n)

e eg f(n)=5n+n+5= f(n)=0(n%
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How to measure computational complexity

e Landau notation: f(n) = O(g(n)) for n — oo if
there are M, ng > 0 such that for all n > ng:

|f(n)] < Mg(n)

e eg f(n)=5n+n+5= f(n)=0(n%
@ runtime of algorithm: input size n, algorithm needs
O(g(n)) computation time for solution
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How to measure computational complexity

e Landau notation: f(n) = O(g(n)) for n — oo if
there are M, ng > 0 such that for all n > ng:

|f(n)] < Mg(n)

e eg. f(n)=5n+n+5= f(n)=0O(n?)

@ runtime of algorithm: input size n, algorithm needs
O(g(n)) computation time for solution

@ e.g. binary search in list of size n has logarithmic
run time, i.e. algorithm needs O(log n)
computation steps for solution

Stochastics
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Benchmarking and profiling computer programs Uios
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Benchmarking: compare the computing time of programs with same input/output



i HE MoMod
Benchmarking and profiling computer programs oo
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%% AIMS

Benchmarking: compare the computing time of programs with same input/output

Recursive vs dynamic programming

The Fibonacci numbers are defined by the recursion:

FR=1FRh=1F=F_1+F,2

for n > 2. Calculate F, by both recursive and dynamic programming (i.e. using
already stored numbers). Use the R package microbenchmark to benchmark both
functions and system.time to calculate the runtime as a function of n. What do
you observe? ‘R 05_benchmarking.R

Randomness from the computer 5 il
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Profiling: diagnosing required memory, frequency and duration of functional calls for
each line of your computer code



Benchmarking and profiling computer programs Uios

R

£ ¢ AIMS
Profiling: diagnosing required memory, frequency and duration of functional calls for
each line of your computer code

Profiling

Use the R function Rprof to profile both implementations of the Fibonacci number
calculations. What do you observe? ‘R 06 _profiling.R

Randomness from the computer "/ ol
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Benchmarking and profiling computer programs oo
Sy
4% AIMS

Profiling: diagnosing required memory, frequency and duration of functional calls for

each line of your computer code

Profiling
Use the R function Rprof to profile both implementations of the Fibonacci number
calculations. What do you observe? ‘R 06 _profiling.R

Cyclomatic complexity: number of linearly independent paths through code

43 / 101
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Benchmarking and profiling computer programs Uios
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Profiling: diagnosing required memory, frequency and duration of functional calls for
each line of your computer code

Profiling

Use the R function Rprof to profile both implementations of the Fibonacci number
calculations. What do you observe? ‘R 06 _profiling.R

Cyclomatic complexity: number of linearly independent paths through code

Cyclomatic complexity

Use the R package cyclocomp to profile both implementations of the Fibonacci
number calculations. What do you observe? What are your conclusion? ‘R
07_cyclocomp.R

Randomness from the computer /il
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@ species S: chemical compounds whose dynamics we model

@ reactions R: how to convert one complex into another

Example

S={AB,C},C={A+B,2B,C,0},R={A+B—2B,B— C,C — 0}
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@ species S: chemical compounds whose dynamics we model
e complexes C: nonnegative linear combinations of species (i.e. interactions)
@ reactions R: how to convert one complex into another

Example

S={AB,C},C={A+B,2B,C,0},R={A+B—2B,B— C,C — 0}
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@ species S: chemical compounds whose dynamics we model
e complexes C: nonnegative linear combinations of species (i.e. interactions)
@ reactions R: how to convert one complex into another

Example

S={AB,C},C={A+B,2B,C,0},R={A+B—2B,B— C,C — 0}

o A+ B — 2B: A active, B inactive form of protein, B catalyzes A
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@ species S: chemical compounds whose dynamics we model
e complexes C: nonnegative linear combinations of species (i.e. interactions)
@ reactions R: how to convert one complex into another

Example

S={AB,C},C={A+B,2B,C,0},R={A+B—2B,B— C,C — 0}

o A+ B — 2B: A active, B inactive form of protein, B catalyzes A

@ B — C: B undergoes conformational change to become C
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@ species S: chemical compounds whose dynamics we model
e complexes C: nonnegative linear combinations of species (i.e. interactions)
@ reactions R: how to convert one complex into another

Example

S={AB,C},C={A+B,2B,C,0},R={A+B—2B,B— C,C — 0}

o A+ B — 2B: A active, B inactive form of protein, B catalyzes A
@ B — C: B undergoes conformational change to become C
@ C — (): Cis degraded
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© R={yk = Vi ¥k: ¥k € C} with yx =37, yi;iSi
e stoichiometric vectors of network: (i 1=y, — yx € Z"

Example
S={A,B,C},C={A+B,2B,C,0},R={A+B —=2B,B— C,C — 0}
¢1=100,2,0] - [1,1,0] =[-1,1,0]

(2 =1[0,0,1] — [0,1,0] = [0, —1,1]
(3 =10,0,0] —[0,0,1] = [0,0, —1]
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Counting process: a_% AIMS

t — N(t) € N such that N(0) = 0, N constant except jumps of size +1.

Poisson (point) process

Counting process such that
o N(0)=0
@ independent increments, i.e. N(tx11) — N(tx) are independent r.v. for
0<t; < <ty
e distribution of N(t 4+ A) — N(t) does not depend on t
it follows: P(N(t) = k) = %e”\t "number of arrivals until time t”
@ jump time Sy = min{t : N(t) > k}, then Sy — Sx_1 ~ Exp(\)

.

Biochemical reaction systems "/ ol
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@ dynamical system of molecules

X() = X(0) + Y R(t)¢k
K



Counting processes and biochemical reactions Uios

. . . S
@ Ry(t) counting process for occurrences of reaction k by time t %% AIMS
@ dynamical system of molecules

X() = X(0) + Y R(t)¢k
K

Reaction dynamics as Markov jump processes A

Let \x : N — R, be intensity function of reaction k for given molecular state.
The counting processes Ry can we represented by iid Poisson processes Yj with
intensity 1 such that for intensity function )\, : N® — R_:

R = vl [ M(X(5))ds)

ﬁ Anderson& Kurtz, chapter 1, ppb
Biochemical reaction systems 48 / 101
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Mass-action kinetics, seen by the chemist

At constant temperature, the rate of chemical reaction is directly proportional to
the product of molar concentrations of reacting species.

Biochemical reaction systems )/ il
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Mass-action kinetics, seen by the chemist A

At constant temperature, the rate of chemical reaction is directly proportional to
the product of molar concentrations of reacting species.

Mass-action kinetics, seen by the mathematician A
x;!
Me(X)=ri || ———
=l 5=

X; = #species i, yxi = #species i needed for reaction k, "falling factorial”

Biochemical reaction systems )/ il
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Mass-action kinetics, seen by the mathematician

X,'!
b=l =

X; = #species i, yx; = #species i needed for reaction k, "falling factorial”

Biochemical reaction systems )
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S

Mass-action kinetics, seen by the mathematician A
X,'!
MX)=k || m——
() H (xi — yki)!

X; = #species i, yx; = #species i needed for reaction k, "falling factorial”

Mass-action kinetics, seen by the mathematician A

Ak is proportional to the number of distinct subsets of the molecules present that
can form the inputs for the reaction. E.g. for reaction A+ B — 2B, \1(x) = k1x1Xx2.

Biochemical reaction systems )
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Beyond mass-action kinetics

Think of physical or chemical reasons that could prevent the validity of the principle
of mass-action!

Biochemical reaction systems EE



Beyond mass-action kinetics MaMo3
rica

S

8 Iy
< AIMS

I

i,

Beyond mass-action kinetics

Think of physical or chemical reasons that could prevent the validity of the principle
of mass-action!

Beyond mass-action kinetics

Explain the concept of cooperative binding and how it would change the assump-
tions on biochemical reaction dynamics!

Biochemical reaction systems EE
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Beyond mass-action kinetics

Think of physical or chemical reasons that could prevent the validity of the principle
of mass-action!

Beyond mass-action kinetics

Explain the concept of cooperative binding and how it would change the assump-
tions on biochemical reaction dynamics!

Beyond mass-action kinetics

Can you give an example for non-mass-action kinetics in epidemic processes?

T p———— 5 /0
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stoichiometrically admissible: \;(x) =0 if x; < yj; for all i (e.g. for A+ B — 2B we
need at least one A and one B for the reaction to happen)
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stoichiometrically admissible: \;(x) =0 if x; < yj; for all i (e.g. for A+ B — 2B we
need at least one A and one B for the reaction to happen)

Reaction | Intensity function | Rate | molecular
A+ B — 2B A1(x) = K1x1x0 K1 catalysis of protein inactivation
B— C A2 (x) = Kaxo Ko conformational change
C—0 A3(x) = K3x3 K3 degradation




Epidemics as biochemical reaction systems
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stoichiometrically admissible: \;(x) =0 if x; < yj; for all i (e.g. for A+ B — 2B we
need at least one A and one B for the reaction to happen)

Reaction \ Intensity function \ Rate \ molecular
A+ B — 2B A1(x) = K1x1x0 K1 catalysis of protein inactivation
B— C A2 (x) = Kaxo Ko conformational change
C—0 A3(x) = K3x3 K3 degradation
‘ Reaction ‘ Intensity function ‘ Rate ‘ moleeular ‘ epi ‘
S+1—=21| M(S,I,R)=pSI 8 | eatalysis-ofprotein-inactivation | new infections
I - R (S, 1,R) =~ ~y conformational-change recovery
R—0 A3(S,1,R) =06R ) degradation death

Stochastics

Biochemical reaction systems

52 / 101



Epidemics as biochemical reaction systems via Poisson processes MoMosd
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| Reaction | Intensity function | Rate | Stoichiometry ( | epi
S+1—=21| M\(S,1,R)=p3SI 6] [—1,1,0] new infections
I - R (S, 1, R) =~ o [0,—-1,1] recovery
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Epidemics as biochemical reaction systems via Poisson processes MoMosd

Africa
4. AIMS
’ Reaction \ Intensity function \ Rate \ Stoichiometry ( \ epi
S+1—=21| M\(S,1,R)=p3SI 6] [—1,1,0] new infections
I - R (S, 1, R) =~ o [0,—-1,1] recovery

@ time evolution of molecules per species is given by solution of the equation

X(0) = x(0)+ V([ M6)ds)G + Y2 / xa(2)ds)ca

5(t) t 0
I(t) + Y[ BS(s +Y2([ ~I(s)ds) | -1
] - ]l ovem [ ] vt o

e Biochemical reaction systems 5




Group work: simulate variations of the SIR models Uios

Sy

4% AIMS

i,

For each of the examples draw the flow diagram for the disease dynamics, write the
biochemical reaction network and stochiometric vectors!

Incubation period

From exposure to infectiousness, 5 days pass on average. Add a compartement for
exposed but not yet infectious hosts!

Ebola-like dynamics

In addition to the basic model used for influenza, we consider also a fraction p of
individuals to die from the disease. Contact of susceptibles with dead bodies before
burial will lead to additional infections.

Biochemical reaction systems EYE



Group work: simulate variations of the SIR models Uios

s\\\\w%
2. AIMS

For each of the examples draw the flow diagram for the disease dynamics, write the
biochemical reaction network and stochiometric vectors!

Two rooms in the dorm

In the boarding school there is a respiratory disease outbreak among the students.
All of them live together in the same building, but there are two dormitories A and
B. Students living in B prefer to visit those living in A, but not so much the other
way around. We have seen the following contact rates:

0.1

A—B B —

Biochemical reaction systems 35 il



Group work: solutions

For infectivity 54 > 85 and recovery rate v,

the flow diagram reads:

Ba
(s1)

}
@

Stochastics

MoaMod
Africa

£ ¢ AIMS
The species are {Sa, Ia, Ra, Sg, Ig, Rg}, the
complexes are {Sp + Ia,2la, Ra, S +
Ig,2lg, Rg, 5o+ Ig,Ia+ Ig, S + /A}, the
reactions are Ry : Sp + Ix — 24,
Ry :lp— Ra, R3:Sg+ Ig — 2,
Ry:lg — Rg, Rs :Sa+1g — Ia+ I,
Re : Sg + 1o — 14 + Ig and the stoichiometric
matrix is

-1 0 0 0 -1 0
1 -1 0 0 +1 0
0O 41 0 0 0 O
o 0 -1 0 0 -1
0 0 +1 -1 0 +1
(0 0 0 +1 0 O]

Biochemical reaction systems 56 / 101



From Markov jump processes to differential equations Uios
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e replace molecule numbers X(t) by concentration C(t) = 1.X(t)
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e replace molecule numbers X(t) by concentration C(t) = 1.X(t)

e N total number of molecules at given volume (e.g. Avogadro’'s number x volume v, or
total population)
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e replace molecule numbers X(t) by concentration C(t) = 1.X(t)

e N total number of molecules at given volume (e.g. Avogadro’'s number x volume v, or
total population)

@ reaction rate inversely proportional to volume



From Markov jump processes to differential equations Uios
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2. AIMS

e replace molecule numbers X(t) by concentration C(t) = 1.X(t)
e N total number of molecules at given volume (e.g. Avogadro’'s number x volume v, or

total population)
@ reaction rate inversely proportional to volume

Concentration dynamics

CMe) = €M)+ SN | A(C(s))ds)e
k=1 0

57 / 101
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@ replace molecule numbers X(t) by concentration C(t) = N%X(t)
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@ replace molecule numbers X(t) by concentration C(t) = N%X(t)

e N, total number of molecules at given volume (e.g. Avogadro's number x volume v, or
total population)
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@ replace molecule numbers X(t) by concentration C(t) = N%X(t)

e N, total number of molecules at given volume (e.g. Avogadro's number x volume v, or
total population)

@ reaction rates vary inversely with volume



From Markov jump processes to differential equations Uios
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2. AIMS

@ replace molecule numbers X(t) by concentration C(t) = N%X(t)
e N, total number of molecules at given volume (e.g. Avogadro’s number x volume v, or

total population)
@ reaction rates vary inversely with volume

Concentration dynamics

CM(t) == C™(0) + > N, TYi(N,y /Ot M (CN (5))ds)Ck
i=1

58 / 101
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From Markov jump processes to differential equations fiaMod
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@ what happens if N = 00?



From Markov jump processes to differential equations fiaMod
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@ what happens if N = 00?
o F(x) =), A(x)Ck globally Lipschitz



From Markov jump processes to differential equations MoMosd
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4. AIMS
@ what happens if N = 00?
o F(x) =), A(x)Ck globally Lipschitz
@ deterministic integral equation
t
x(t) = x(0) +/ F(x(s))ds (8)
0



From Markov jump processes to differential equations MoMosd

' Africa
%% AIMS
@ what happens if N = 00?
o F(x):=>", A(x)Ck globally Lipschitz
@ deterministic integral equation
t
x(t) = x(0) +/ F(x(s))ds (8)
0

Convergence theorem

lim P(sup|CY(s) — x(s)| > €) =0
N—oo s<t

for each ¢,t > 0, weak law of large numbers

Biochemical reaction systems )



From Markov jump processes to differential equations MoMosd

. Africa
& & AIMS
@ what happens if N = 00?
F(x) =>4 M(x)Ck globally Lipschitz
@ deterministic integral equation
t
x(t) = x(0) +/ F(x(s))ds (8)
0

Convergence theorem

I|m IP’(sup|C (s) —x(s)|>¢e)=0

s<t

for each ¢,t > 0, weak law of large numbers

@ Proof built on Gronwall & Doob inequalities and martingale theory: ﬁ Anderson &

Kurtz, page 44f
Biochemical reaction systems 59 / 101
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@ species of molecules can form complexes, and changes between complexes define
reactions
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@ reactions can be described by stoichiometric vectors

@ under the mass action assumption, the rate of reaction is proportional to the number of
molecules involved



Biochemical reaction systems: summary Uios

s““"%
4% AIMS

@ species of molecules can form complexes, and changes between complexes define
reactions

@ reactions can be described by stoichiometric vectors

@ under the mass action assumption, the rate of reaction is proportional to the number of
molecules involved

@ the evolution of molecules over time can be described mathematically as a Poisson process



Biochemical reaction systems: summary Uios
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4% AIMS

@ species of molecules can form complexes, and changes between complexes define
reactions

@ reactions can be described by stoichiometric vectors

@ under the mass action assumption, the rate of reaction is proportional to the number of
molecules involved

@ the evolution of molecules over time can be described mathematically as a Poisson process

@ molecular concentrations converge towards deterministic limit as number of molecules
goes to infinity



Biochemical reaction systems: summary Uios

Sy

4% AIMS

i,

Back to epidemic processes @>

For the simple SIR model, show that assumptions of the convergence theorem are

satisfied.

Write explicitly the integral equation (8) and show how it relates to the
ODE system.

Biochemical reaction systems )



Gillespie's algorithm: direct method Uios

s\\\\w%

2. AIMS
Simulate systems of biochemical reactions (e.g. susceptible meets infectious), assuming no
more than two individuals at a time are involved in the reaction or events:

@ reminder: . .
X(t) = X(0) + Yl(/o M (Xs)ds)¢r + YZ(/0 Ao (Ys)ds)Co

@ suppose transition times between states t;, define X(t) = X(tx) for t € [t, tk+1)
@ initial condition X(0) = xo

1 for t = ty calculate Ag(X:) for all k

2 7 time to next event follows Exp(} ", Ax(Xt))

3 next event K sampled with %

4 update time: tg1 1 =t + 7

5 update state: X(tx+1) = X¢, + Ck



Gillespie's algorithm: direct method for SIR MaMod
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4% AIMS

1: Initial trajectory T = (t,S,/,R) = (0,762,1,0)
2: while / > 0 do

3:

13:

Current state S last row of 7, S = S§[2],/ = S[3], R = S[4]
possible events vector: £ = (new infection, ..., new infection, clearance, . .., clearance)

S times | times

rates vector: A = (B1/N,...,B1/N,~,...,7)
—_————— ——

S times | times

time to next event: draw sample 7 from Exp(_; Ai)
choose next event: sample from £ with probability Z)TiX

if next event is " new infection” then
S+ 8+(r,-1,1,0)

else if next event is "clearance” then
S+ 8+(r,0-1,1)

end if

T+ [T,S]

14: end while
15: return T




Gillespie's direct method for influenza SIR model Uios

s““’%
4% AIMS

write the Gillespie direct method in R for an SIR model

use the optimal parameters obtained for the ODE system: § = 1.6692258, v = 0.4434502

perform 100 realizations of the stochastic process and compare to the ODE solution

@ does the law of large numbers hold?

R 08_GillespieDirect.R



Gillespie's direct method for influenza SIR model MoMod

Africa
Sy
%%Eél\lhnii
ODE
300
data
200
1001
[ )
01 e
: 5 10 15 20

time What happens if you choose 5 = 0.77



Gillespie's algorithm: first reaction method for SIR MaMod
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1: Initial trajectory T = (t,S,/,R) = (0,762,1,0)
2: while / > 0 do

3:

13:

Current state S last row of 7, S = S§[2],/ = S[3], R = S[4]

possible events vector: £ = (new infection, ..., new infection, clearance, ..., clearance)
S times | times
rates vector: A = (BI/N,....,B1/N,~,....,7)
—_—
S times | times

time to event i: draw sample 7; from Exp(};)
choose next event E, € £: for = argmin; 7;
if next event is "new infection” then

S S+ (u,—1,1,0)
else if next event is "clearance” then

S S+ (74,0,-1,1)
end if
T« [T,S]

14: end while
15: return T




Gillespie's algorithm: tau-leap MaMo3

Africa

R
@% AIMS

direct method: sample time to next reaction, only one reaction per time step
tau-leap: fix time to next reaction 7 > 0, sample several reactions
tau-leap assumption: rates of reactions do not change within [t,t + 7)
tau-leap: X(t +7) = X(t) +>_; Pi(\7)
tau-leap: Pj(x) are independent Poisson random variables with intensity x
for each event j, sample Kj ~ Poisson(\;7) "number of times of event”
update: S[t + 7] = S[t] + >_; Kjv; for vj; stoichiometric vector, state /, event j
really fast, 7 can be optimized, check assumptions!

R 09_GillespieTau.R



Group work: simulate variations of the SIR models Uios
Sy

4% AIMS

i,

Simulate SIR variations with Gillespie

For the three models from the group work (incubation period, Ebola-like and two rooms

in dormitory) use the R package GillespieSSA to simulate trajectories! Play around
with parameters!

Stochastic simulation algorithms Y



Gibson-Bruck method: speed up Gillespie with data structures jaiod
rica
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4% AIMS

Problem: model with structure for age, location, immunity, network, etc. has many
different species and possible reactions = Gillespie slow: two random number draw per
iteration, event/rate updates

@ Solution: Gibson-Bruck algorithm with data structure

e dependency graph between events = event/rate update

indexed priority queue of event times = single random number draw needed



Gibson-Bruck method: dependency graph

‘ node H reaction ‘ propensity ‘ affects ‘ depends H event ‘
1 S+I1—=1+1|8S()0(t)*| I,S 1,5 new infection
2 I =R ~I(t) IR / clearance
3 =0 vi(t) / / virulence
4 0—S ™ S 0 birth
5 R—S pR(t) R,S R immunity loss

?I(t) denotes sum of all / at time t etc.

Stochastics

MaMod
Africa

s\\\w@‘
4% AIMS
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Gibson-Bruck method: dependency graph MoMod
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‘ node H reaction ‘ propensity ‘ affects ‘ depends H event
1 S+1—=1+11]8S())?| I,S new infection

I =R ~I(t) IR clearance
=0 vi(t) / virulence
0—S ™ S birth
R—S pR(t) R,S immunity loss
?I(t) denotes sum of all / at time t etc.
(—()

dependency graph: draw edge Ej; iff affects(i) N depends(j) # 0

a s wWN

DS~ =,




Gibson-Bruck method: dependency graph MoMod
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‘ node H reaction ‘ propensity ‘ affects ‘ depends H event
1 S+1—=1+1]8S()(t)?| I,S new infection

I =R ~I(t) I,R clearance
I =0 vi(t) / virulence
) ™ S birth
R—S pR(t) R,S immunity loss
?I(t) denotes sum of all [ at time t etc.
(—=(

dependency graph: draw edge Ej; iff affects(i) N depends(j) # 0
update: reaction i happens — propensity update for U; = {j : Ej; # 0}

Stochastics

o~ wnN

S~ =,

Stochastic simulation algorithms 70 / 101



Gibson-Bruck method: indexed priority queue Uios
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4% AIMS

@ priority queue: data structure such that elements with highest priority are served first

@ binary heap: complete binary tree, key stored in each node is either less than or equal to
the keys in the node's children

e O(logn) performance for inserts and removals, and O(logn) to build heap from n elements

| -
[ [ [ 17 [25 [ 3] (2) ()
| I N




Gibson-Bruck method: algorithm fiaMod
rica

s\\\\w%
£ AIMS

S

1: set t = 0; generate dependency graph D of reactions; calculate propensity function
«j for each reaction i = 1, ..., M; draw 7; ~ Exp(«;); write absolute time t; = t+7;
in an indexed priority queue given by heap Q.
2: while t < tax do
3: choose next reaction R, with y root in Q
4:  update stoichiometry, i.e. copy number of molecules after reaction R, set
t=t,
5. update reaction rates «; for i € U, using D
6: update next reaction times in Q for updated «; without new random number
draw: o
finew = — (i = 1) + ¢

i,new

Ti,new

7: end while
8: return trajectory for each species and reaction times

StochPy on A
Stochastic simulation algorithms 72 /101




Malaria toy model: Gillespie-type simulation MoMod

Africa
Sy
‘@fé AIMS
y 1
susceptible | <—| infectious @ « host seeking and biting rate by (female)
human '—>| human mosquito
a @ 7 recovery rate from human infection
@ [3 acquisition rate from infectious host to
‘ B V . susceptible mosquito
5 susceptl‘ble - 1nfect19us _>8 @ /1 mosquito birth rate (from both
mosquito mosquito susceptible and infected mosquitoes)

\j \/ @ J death rate of adult mosquito
n 0

Stochastics Stochastic simulation algorithms 73 /101



Malaria toy model: Gillespie-type simulation MoMod
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£ ¢ AIMS
S 1
susceptible <l infectious
human —>| human iS — _asz + 1
o dt H
a _ Y _.
it~ TH
BN dU I
& susceptible.—>| infectious | o — = —pUZ+u(U+V)-6U
. . —_ dt H
mosquito mosquito dv

I
= BU- -6V
dt H
\“j\u/

Stochastics Stochastic simulation algorithms 74 / 101



Malaria toy model: Gillespie-type simulation

Where does the term % come from?
@ « host seeking and biting rate
@ then, a(U + V) is expected number of bites

° O‘(U,_TV) are expected number of bites per human

@ multiply with infectious mosquito density WVV gives

V_aoU+V) _ av

® OV H T H

ds

dt
dl

dt
du

dt
dv

dt

MaMod
Africa

s““’%
4% AIMS

vV
—aS— +l
aSH—FV

V

— =l
Sy =

/
—BU—H+M(U+V)—5U

/
ﬁUﬁ -0V



Malaria toy model: Gillespie-type simulation MoMod

dS

dt
dl

dt
du

dt
dv

dt

Stochastics

S
S
aVﬁ—’yl
/
_/BUE +u(U+V)—-6U

/
BUL — oV

Africa

s\\\w@‘
4% AIMS

@ 4 species: S, I, U, V

@ 7 reactions: S+ V = I1+V, =S5,
U+l —-V+I1,U—=0, V=0 U-—2U,
VU4V

@ 7 intensities: a%, ~l, 6%, UV, nU,
wV,

@ stoichiometry 4 X 7 matrix:

-1 1 0 0 0 0O
1 -1 0 0 0 0O
0o 0 -1 -1 0 11
0 0 +41 0 -1 00
Stochastic simulation algorithms 76 / 101



Malaria toy model: Gillespie-type simulation Uios

s\\\\w%
2. AIMS

For this model, the basic reproduction number is

af(U+ V)/H
ey

Malaria toy model @

Simulate with GillespieSSA and obtain an endemic equilibrium!

Choose H = 1000, U+ V = 5000, 4 =6 = 1/10, B = a = 0.03 and search some values
for «y in literature! Change the ratio of mosquito M = U + V to human H =5+ /!
Plot the curve of infected humans over two year!

‘R 10_RossMcDonaldGillespie.R

Ro =

Stochastic simulation algorithms T



Malaria toy model: Gillespie-type

ds

dt
dl

dt
dUu

dt
dv

dt

S
—aV— /
« H-i-’y

S
V— —~l
aVo =7

/
~BU 4 u(U + V) = 5U

/
N 1V
gy 0

simulation MoaMod
Africa
s\\\\w%
2. AIMS
400 A
300+
method
~ 2004 —— Gillesp
— ODE
100
o

Stochastic simulation algorithms 3



Asymptomatic Malaria toy model: Gillespie-type simulation Uios
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2. AIMS

Asymptomatic infections <®\

Based on our Malaria toy model, we consider three classes of infected populations: con-
firmed cases /. who are treated before gametocytemia, asymptomatic with high game-
tocytemia /I, and and asymptomatic with low gametocytemia /;. We assume that hosts
with high/low gametocytemia have a transmission rate /3, 5. The duration of infection
with positive gametocytemia for /., Ip, I; is 10,45, 15 days resp.

Stochastic simulation algorithms 0



Asymptomatic Malaria toy model: Gillespie simulation Uios

s\\\\w%
2. AIMS

12~ [ Symptomatic malaria infections
3 Asymptomatic microscopy-detected infections
33 Asymptomatic gPCR-detected infections

Asymptomatic infections

% 84 Use the figure to discuss param-
f 838% eters for proportions of I, Iy, Iy
H and the ratio of (3, over (.
: N Draw the flow diagram, use pa-
rameters from the toy model,
ol 2 . it . ' write the reactions, rates and

0 25 50 75 100

stoichiometric vectors. Simu-
late the dynamics of infection
compartments with the Gille-
spie algorithm!

Infected population (%)

Andolina et al. 2021: The bar heights indicate the proportion of mosquitoes that became
infected when feeding on this population. The bar widths indicate the proportion of the infected

population.




Asymptomatic Malaria toy model: Gillespie simulation Uios
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4% AIMS

Proposed solution:

@ New infections: Exposure to infectious mosquitoes V creates new infections in I¢, Iy, Iy at
rate ac = pca, ap = ppa and ay = pga where EIR @ = 2 and
[Pc, Ph, pe] = [0.05,0.17,0.78] the relative proportion of confirmed/treated, high and low
parasitemia infections after a mosquito bite.

@ clearance rates for human infections are v, = 1/10,~v, = 1/45,v, = 1/15.

@ For transmission from humans to vectors, we assume that 5. = 0.03 and 5, = 0.08 and
Be = KBh for K =0.84/0.16, i.e. the transmission ratio into I, vs /. infections.

@ The life-cycle for the mosquitoes populations remains as in the toy-model before.

@ “R 11 RossMcDonaldGillespieAsymptomatic.R



Asymptomatic Malaria toy model: biochemical reaction system MoMod

®6 66000000600

Africa
Sy
S+V = .+ Vatrate ap. 7, 5.6 AIMS

S+V —I,+ V atrate ozph%
S+V—>Ig—|—Vatrateapg%
I. — 0 at rate 7,

I, — 0 at rate v,

lp — O at rate vy
U+1l.—V+I at rateﬁC%
U+1l,— V+1at rateﬁh%
U+lp— V+ 1 at rate 3o
U— 0 at rate §

V — () at rate §

U— U+ U atrate

V= U+ V atrate i

Stochastics Stochastic simulation algorithms 82 / 101




Asymptomatic Malaria toy model: Gillespie simulation MoMod
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2. AIMS

With initial conditions H = 10000, /.(t) = 20, /,(0) = 5, /;(0) = 10 and V(0) = 8 and
U(0) = 49992, we obtain an endemic equilibrium of confirmed cases prevalence at roughly 3%,
while a large part of the population is infected without symptoms at low-level parasitemia:

Ic Ih I
400 2000 - 6000
3001 1500 4
2001 10001 4000
100 4 500 - 2000 A — lc
044 . . : 04 ' ' ' 0y : : , — Ih
o 0 200 400 600 0 200 400 600 0 200 400 600
E —
g S u v
10000 1 50000 o
75001 45000 4 10000 —u
5000 —
40000 5000 1
2500
04 : : v 350007 : . : : 0y v T v
0 200 400 600 0 200 400 600 0 200 400 600
days

Stochastics
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Asymptomatic Malaria intervention toy model: Gillespie simulation MaMod
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For the asymptomatic model, we want to evaluate two different intervention strategies:

Test and treat vs. mass drug administration

@ test and treat: the antigen-based diagnostics has a sensitivity to detect 95% of
asymptomatic cases with high gametocytemia and 15% with low gametocytemia,
all positively tested are treated.

@ mass drug administration: 95% of the entire population gets drug treatment,
regardless of infection status

Simulate trajectories for the two strategies and the counterfactual starting from the endemic
equilibrium obtained from the preceding exercise!

What is your metric of evaluation and which intervention would you recommend?

Stochastic simulation algorithms YE



Asymptomatic Malaria intervention toy model: reaction system fiaMod
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For test and treat we assume that
both I, and I, move to treated
compartment T. For mass drug
administration, we also assume that
S move into T.

@ I, — T atrate Ty,

@ I, — T atrate Ty

® S~ Tatrate M

@ T — Satrater=1/30

R
12_RossMcDonaldGille spieAsymptomatic,TTstBA .R

Stochastics Stochastic simulation algorithms 85 / 101




Asymptomatic Malaria intervention toy model: Gillespie simulation MM

4. AIMS
@ test and treat: T, =0.95, Ty =0.15and M =0, r =1/30
e MDA: T, =T, =M=0.98, r=1/30

lh 1l
1200 4000
900 o 30004
600 o 2000
300 o 1000 4
0 N T T T T 0 b T T T T
g 0 25 50 75 0 25 50 75 —— counterfactual
[ s T — MDA
10000
—— test&treat
7500 A 7500 4
5000 o 5000 o
2500 o 2500 o
04 T T T 0+, T T T
0 25 50 75 0 25 50 75
days

Prevalence is close to 0 within 3 months, test sensitivity for /; is crucial to achieve elimination,
Stochastic simulation algorithms 86 / 101



Stochastic differential equation heuristics

MaMod
Africa
4.2 AIMS
e consider SIR stochastic process X(t) = [S(t), /(t)] s.th. for X(t) = E(X(t))
dS 1 dr - 1 -
@ - PN Framtaad T

Stochastics

Stochastic simulation algorithms
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Stochastic differential equation heuristics

MaMod
Africa
4.2 AIMS
e consider SIR stochastic process X(t) = [S(t), I(t)] s.th. for X(t) = E(X(t))
dS 1 dl - 1 -
@ - PN Framtaad T
e divide time interval [0, t] into subintervals of length At, with
AX(t) =[AS(t), Al(t)] = [S(t + At) —

S(t), I(t+ At) — I(t)]

Stochastics

Stochastic simulation algorithms
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Stochastic differential equation heuristics

MaMod
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4.2 AIMS
e consider SIR stochastic process X(t) = [S(t), I(t)] s.th. for X(t) = E(X(t))
dS 1 dl 1 -
- _ _ 36 — |
N Eraia T
e divide time interval [0, t] into subintervals of length At, with
AX(t) =[AS(t), Al(t)] = [S(t + At) — S(¢), I(t + At) — I(t)]
o further divide At s.th. for At; = t; — tj_1 :

> P At = At and

=Y AX(t)

Stochastics

Stochastic simulation algorithms
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Stochastic differential equation heuristics

MaMod
Africa
4.2 AIMS
e consider SIR stochastic process X(t) = [S(t), I(t)] s.th. for X(t) = E(X(t))
dS 1 dl 1 -
- _ _ 36 — |
N Eraia T
e divide time interval [0, t] into subintervals of length At, with
AX(t) =[AS(t), Al(t)] = [S(t + At) — S(¢), I(t + At) — I(t)]
o further divide At s.th. for At; = t; — tj_1 :

> P At = At and

=Y AX(t)

o if At; small, assume AX(t;) are iid on At
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4.2 AIMS
e consider SIR stochastic process X(t) = [S(t), I(t)] s.th. for X(t) = E(X(t))
dS 1 dl 1 -
- _ _ 36 — |
N Eraia T
e divide time interval [0, t] into subintervals of length At, with
AX(t) =[AS(t), Al(t)] = [S(t + At) — S(¢), I(t + At) — I(t)]
o further divide At s.th. for At; = t; — ti_1

—1:y ;i Ati= At and

=Y AX(t)
o if At; small, assume AX(t;) are iid on At
e for n large, CTL: ﬁ (AX(t) —E(AX(1)))

~ N(0,cov(AX(t)))
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At the order of At:

E(AX(1)) ~ [ 55
At the order of At:
a0 <0000 - (LR el an)

Stochastics
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At the order of At:

0|

E(AX(t)) ~ {_5

At the order of At:

N _ (cov(AS,AS) cov(AS,Al)
COV(AX) ~ E((AX)(AX)T) - <COV(AS,A/) COV(AI,AI))
sL —_BsL
cov(AX) ~ <—B55N,(, ,6’5,(5,+N’Y/> At = CAt

Stochastics
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By assumption AX(t;) are iid on At, and with At = nAt; s.th.

E(AX?) = E(A52):E(ZA5(t,)2)

= ) E(AS(t) +2ZE (AS())E(AS(t))

i<j
nE(AS(t0)?) + n(n — 1)E(AS(tp))?
= n(=1)2A181(t)2) 4 0 0? (1 - Anpi(h)
AtBI(tg) >

St)) L (A6)2(1 - 1)(B1(1)2))?

Q

at the order of At with P(AS(t;) = —1) = At;81(t;_1) Uizt
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Stochastic differential equation

AX(t) ~ F(X(£))At + G(X(£)AW(t)
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Stochastic differential equation

AX(t) ~ F(X(£))At + G(X(£)AW(t)

@ Here, the matrix G is such that GGT = C and
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Stochastic differential equation

AX(t) ~ F(X(£))At + G(X(£)AW(t)

@ Here, the matrix G is such that GGT = C and
o AW =[AWy, AW, with AW; ~ N(0, At)

Stochastic simulation algorithms Sy
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Euler-Maruyama algorithm A

We implement
AX(t) = f(X(t))At+ G(X(t))AW(t)

by first order scheme
X[i + 1] = X[i] + F(X[)) At + G(X[i])nV At

where i € R? with 7, ~ N(0,1) and d is the number of reactions.

Stochastic simulation algorithms cil )
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In our SIR example:

_ 1
G(S, 1) = ( !
t

Just take square roots of the rates from the ODE!

Implementation of Euler-Maruyama

Code the Euler-Maruyama scheme in R for the influenza boarding school SIR model!
Simulate several trajectories! When choosing 8 > +, do you have simulations where /
get extinct early on? ‘R 13_ForwardEulerMaruyamaSIR.R

Stochastic simulation algorithms =




Euler-Maruyama algorithm for SIR

compartment

600 -
§2) —
2 4004
e — R
— s
2004
0-
T T T T
0 5 10 15
days
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Malaria toy model with stochastic differential equation MaMod

S I dS
susceptible | <~
human |—>| human
¢ dl
By \ 1
5 |susceptible|—> 3
~— | mosquito mosquito - dU
YRy,
dVv

Africa

£ ¢ AIMS

fidt — ,/av%dwl + /yldW?
hdt +1/aV del Ay ldW?

fadt — ,/ﬁuﬁdw3 + 1/ pUdW?* + \/uVdW> — VsUdw®

fdt + Wsu%dw —\VVdw’

Euler-Maruyama for Malaria toy model

Implement the stochastic differential equation version of the Malaria toy model in R.
‘R 14 RossMcDonaldForwardEulerMaruyama.R

Stochastics
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| S
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400 - 700 4
200 - / 5004
0 . T T T T T T T T
g 0 200 400 600 0 200 400 600
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o

WO A
o probabilistically equivalent to SIR process % Wl |
@ iid Q1,..., Q, ~ Exp(1) for n susceptibles g :
e iid T_(m_1),..., T infection durations, any ﬁ i !
distribution on R (e.g. gamma, Weibull) g I
e minitially infected T_(,,_1),..., To _(é 5|7
@ /(t) =number of infected at time t 2
e infectious " pressure” A(t fo

t;. t2‘ t‘3 ‘ t5

infection t|me



Sellke's method: infectious pressure jaiod
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@ susceptible i accumulates exposure to infection at rate equal to number of infected
individuals
@ ith susceptible becomes infected by time t; if infectious pressure reached: A(t;) = Q;
@ individual who was jth infected remains infected for time T; and then clears
@ infections happen at the right time:

P(susceptible i infected by t + dt|not infected by t) =
P(A(t) < Qi < A(t + dt))
=P(Q; < A(t + dt)|Q; > A(t)) =
(Qr < A(t +1)|Q > (1)) R
(1-— e—/\(t+dt)) -(1- e—/\(t))

~ D — 1 e INt+dt)=A(t)] _  _ o—N(t)dt
e~ t

= N(t)dt = BI(t)dt

@ advantage: generalize straight-forward to infection duration with memory
Stochastic simulation algorithms 97 / 101
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algorithm H time \ space \ conv \ non-Mark. \ in practice
exact Gillespie C D 4 X only for simple systems, slow
first reaction Gillespie C D X X no need to sample next reaction
tau-leap Gillespie D D X X fast for simple systems, step size tuning
Gillespie-Bogufia C D X v only for simple systems, slow
Gillespie-Gibson-Bruck C D X v fast for system with many reactions
Sellke C D v v only for simple systems
Euler-Maruyama C C v X faster to simulate for large populations

Stochastics
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Lecture notes and resources Mgf'\ﬂi%z
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internet mathoverflow, stackoverflow, chatGPT, google colab
lecture notes Anderson, Kurtz: Stochastic Analysis of Biochemical Systems @
lecture notes Allen: Stochastic Population and Epidemic Models @

lecture notes Ammari, Wu, Yu: Numerical Methods for ODEs @
history Ross: An Application of the Theory of Probabilities to the Study of a priori

pathometry. -Part |
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article Lehtinen et al. @
article Begon et al. @
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